IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v40y1989i3p389-396.html
   My bibliography  Save this item

Possibilistic linear regression analysis for fuzzy data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ali Azadeh & Mohammad Sheikhalishahi & Ali Boostani, 2014. "A Flexible Neuro-Fuzzy Approach for Improvement of Seasonal Housing Price Estimation in Uncertain and Non-Linear Environments," South African Journal of Economics, Economic Society of South Africa, vol. 82(4), pages 567-582, December.
  2. Pavel Škrabánek & Jaroslav Marek & Alena Pozdílková, 2021. "Boscovich Fuzzy Regression Line," Mathematics, MDPI, vol. 9(6), pages 1-14, March.
  3. A. Azadeh & M. Saberi & A. Gitiforouz, 2013. "An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2163-2176, June.
  4. Guo, Peijun & Tanaka, Hideo, 2006. "Dual models for possibilistic regression analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 253-266, November.
  5. Chung, William, 2012. "Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 95(C), pages 45-49.
  6. Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
  7. Sugihara, Kazutomi & Ishii, Hiroaki & Tanaka, Hideo, 2004. "Interval priorities in AHP by interval regression analysis," European Journal of Operational Research, Elsevier, vol. 158(3), pages 745-754, November.
  8. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
  9. Lee, Haekwan & Tanaka, Hideo, 1999. "Upper and lower approximation models in interval regression using regression quantile techniques," European Journal of Operational Research, Elsevier, vol. 116(3), pages 653-666, August.
  10. Tanaka, Hideo & Guo, Peijun, 1999. "Portfolio selection based on upper and lower exponential possibility distributions," European Journal of Operational Research, Elsevier, vol. 114(1), pages 115-126, April.
  11. Ankur Moitra & Dhruv Rohatgi, 2022. "Provably Auditing Ordinary Least Squares in Low Dimensions," Papers 2205.14284, arXiv.org, revised Jun 2022.
  12. Barros, C.P. & Emrouznejad, Ali, 2016. "Assessing productive efficiency of banks using integrated Fuzzy-DEA and bootstrapping: A case of Mozambican banksAuthor-Name: Wanke, Peter," European Journal of Operational Research, Elsevier, vol. 249(1), pages 378-389.
  13. A. Nureize & J. Watada & S. Wang, 2014. "Fuzzy random regression based multi-attribute evaluation and its application to oil palm fruit grading," Annals of Operations Research, Springer, vol. 219(1), pages 299-315, August.
  14. Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
  15. Hojati, Mehran & Bector, C. R. & Smimou, Kamal, 2005. "A simple method for computation of fuzzy linear regression," European Journal of Operational Research, Elsevier, vol. 166(1), pages 172-184, October.
  16. Eduardo Conde, 2014. "A Minmax Regret Linear Regression Model Under Uncertainty in the Dependent Variable," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 573-596, February.
  17. Xianfei Yang & Xiang Yu & Hui Lu, 2020. "Dual possibilistic regression models of support vector machines and application in power load forecasting," International Journal of Distributed Sensor Networks, , vol. 16(5), pages 15501477209, May.
  18. Antonio Terceño & María Glòria Barberà-Mariné & Yanina Laumann, 2018. "Análisis de los coeficientes beta: evidencia en el mercado de activos chileno," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 21(3), pages 076-093, December.
  19. de Andres Sanchez, Jorge & Terceno Gomez, Antonio, 2004. "Estimating a fuzzy term structure of interest rates using fuzzy regression techniques," European Journal of Operational Research, Elsevier, vol. 154(3), pages 804-818, May.
  20. Wu, Hsien-Chung, 2003. "Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 203-217, February.
  21. Shafaei Bajestani, Narges & Vahidian Kamyad, Ali & Nasli Esfahani, Ensieh & Zare, Assef, 2018. "Prediction of retinopathy in diabetic patients using type-2 fuzzy regression model," European Journal of Operational Research, Elsevier, vol. 264(3), pages 859-869.
  22. AyÅŸe Tansu, 2022. "Fuzzy Regression Analysis with a proposed model," Technium, Technium Science, vol. 4(1), pages 250-273.
  23. Tao Hong & Pu Wang, 2013. "Fuzzy interaction regression for short term load forecasting," HSC Research Reports HSC/13/14, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  24. Azadeh, A. & Khakestani, M. & Saberi, M., 2009. "A flexible fuzzy regression algorithm for forecasting oil consumption estimation," Energy Policy, Elsevier, vol. 37(12), pages 5567-5579, December.
  25. Azadeh, A. & Saberi, M. & Asadzadeh, S.M. & Khakestani, M., 2011. "A hybrid fuzzy mathematical programming-design of experiment framework for improvement of energy consumption estimation with small data sets and uncertainty: The cases of USA, Canada, Singapore, Pakis," Energy, Elsevier, vol. 36(12), pages 6981-6992.
  26. Tseng, Fang-Mei & Lin, Lin, 2005. "A quadratic interval logit model for forecasting bankruptcy," Omega, Elsevier, vol. 33(1), pages 85-91, February.
  27. Kao, Chiang & Chyu, Chin-Lu, 2003. "Least-squares estimates in fuzzy regression analysis," European Journal of Operational Research, Elsevier, vol. 148(2), pages 426-435, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.