IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v160y2014i2d10.1007_s10957-013-0304-x.html
   My bibliography  Save this article

A Minmax Regret Linear Regression Model Under Uncertainty in the Dependent Variable

Author

Listed:
  • Eduardo Conde

    (University of Seville)

Abstract

This paper analyzes the simple linear regression model corresponding to a sample affected by errors from a non-probabilistic viewpoint. We consider the simplest case where the errors just affect the dependent variable and there only exists one explanatory variable. Moreover, we assume the errors affecting each observation can be bounded. In this context the minmax regret criterion is used in order to obtain a regression line with nearly optimal goodness of fit for any true values of the dependent variable. Theoretical results as well as numerical methods are stated in order to solve the optimization problem under different residual cost functions.

Suggested Citation

  • Eduardo Conde, 2014. "A Minmax Regret Linear Regression Model Under Uncertainty in the Dependent Variable," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 573-596, February.
  • Handle: RePEc:spr:joptap:v:160:y:2014:i:2:d:10.1007_s10957-013-0304-x
    DOI: 10.1007/s10957-013-0304-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0304-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0304-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Yu, 1998. "Min-Max Optimization of Several Classical Discrete Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 221-242, July.
    2. Lee, Haekwan & Tanaka, Hideo, 1999. "Upper and lower approximation models in interval regression using regression quantile techniques," European Journal of Operational Research, Elsevier, vol. 116(3), pages 653-666, August.
    3. T. Assavapokee & M. J. Realff & J. C. Ammons, 2008. "Min-Max Regret Robust Optimization Approach on Interval Data Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 297-316, May.
    4. Tanaka, Hideo & Hayashi, Isao & Watada, Junzo, 1989. "Possibilistic linear regression analysis for fuzzy data," European Journal of Operational Research, Elsevier, vol. 40(3), pages 389-396, June.
    5. Hojati, Mehran & Bector, C. R. & Smimou, Kamal, 2005. "A simple method for computation of fuzzy linear regression," European Journal of Operational Research, Elsevier, vol. 166(1), pages 172-184, October.
    6. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Azadeh & Mohammad Sheikhalishahi & Ali Boostani, 2014. "A Flexible Neuro-Fuzzy Approach for Improvement of Seasonal Housing Price Estimation in Uncertain and Non-Linear Environments," South African Journal of Economics, Economic Society of South Africa, vol. 82(4), pages 567-582, December.
    2. Wang, Hsiao-Fan & Hsu, Fei-Chen, 2009. "An integrated operation module for individual risk management," European Journal of Operational Research, Elsevier, vol. 198(2), pages 610-617, October.
    3. Shafaei Bajestani, Narges & Vahidian Kamyad, Ali & Nasli Esfahani, Ensieh & Zare, Assef, 2018. "Prediction of retinopathy in diabetic patients using type-2 fuzzy regression model," European Journal of Operational Research, Elsevier, vol. 264(3), pages 859-869.
    4. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    5. Barros, C.P. & Emrouznejad, Ali, 2016. "Assessing productive efficiency of banks using integrated Fuzzy-DEA and bootstrapping: A case of Mozambican banksAuthor-Name: Wanke, Peter," European Journal of Operational Research, Elsevier, vol. 249(1), pages 378-389.
    6. Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
    7. Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
    8. Guo, Peijun & Tanaka, Hideo, 2006. "Dual models for possibilistic regression analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 253-266, November.
    9. AyÅŸe Tansu, 2022. "Fuzzy Regression Analysis with a proposed model," Technium, Technium Science, vol. 4(1), pages 250-273.
    10. Azadeh, A. & Khakestani, M. & Saberi, M., 2009. "A flexible fuzzy regression algorithm for forecasting oil consumption estimation," Energy Policy, Elsevier, vol. 37(12), pages 5567-5579, December.
    11. Pavel Škrabánek & Jaroslav Marek & Alena Pozdílková, 2021. "Boscovich Fuzzy Regression Line," Mathematics, MDPI, vol. 9(6), pages 1-14, March.
    12. Chung, William, 2012. "Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 95(C), pages 45-49.
    13. Hojati, Mehran & Bector, C. R. & Smimou, Kamal, 2005. "A simple method for computation of fuzzy linear regression," European Journal of Operational Research, Elsevier, vol. 166(1), pages 172-184, October.
    14. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    15. A. Azadeh & M. Saberi & A. Gitiforouz, 2013. "An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2163-2176, June.
    16. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    17. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    18. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Yokoyama, Ryohei & Tokunaga, Akira & Wakui, Tetsuya, 2018. "Robust optimal design of energy supply systems under uncertain energy demands based on a mixed-integer linear model," Energy, Elsevier, vol. 153(C), pages 159-169.
    20. Dimitris Bertsimas & Nishanth Mundru, 2021. "Sparse Convex Regression," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 262-279, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:160:y:2014:i:2:d:10.1007_s10957-013-0304-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.