IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v226y2013i2p293-300.html
   My bibliography  Save this item

A MILP model to design hybrid wind–photovoltaic isolated rural electrification projects in developing countries

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
  2. Moretti, Luca & Astolfi, Marco & Vergara, Claudio & Macchi, Ennio & Pérez-Arriaga, Josè Ignacio & Manzolini, Giampaolo, 2019. "A design and dispatch optimization algorithm based on mixed integer linear programming for rural electrification," Applied Energy, Elsevier, vol. 233, pages 1104-1121.
  3. Galleguillos-Pozo, R. & Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2021. "Design of stand-alone electrification systems using fuzzy mathematical programming approaches," Energy, Elsevier, vol. 228(C).
  4. Yuansheng Huang & Lei Yang & Shijian Liu & Guangli Wang, 2018. "Cooperation between Two Micro-Grids Considering Power Exchange: An Optimal Sizing Approach Based on Collaborative Operation," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
  5. Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
  6. Ranaboldo, Matteo & Lega, Bruno Domenech & Ferrenbach, David Vilar & Ferrer-Martí, Laia & Moreno, Rafael Pastor & García-Villoria, Alberto, 2014. "Renewable energy projects to electrify rural communities in Cape Verde," Applied Energy, Elsevier, vol. 118(C), pages 280-291.
  7. Aliyu Aliyu & Neyre Tekbiyik-Ersoy, 2019. "A Novel Framework for Cost Optimization of Renewable Energy Installations: A Case Study of Nigeria," Energies, MDPI, vol. 12(22), pages 1-26, November.
  8. Munir Husein & Hyung-Ju Kim & Il-Yop Chung, 2020. "The Impact of Policy and Technology Parameters on the Economics of Microgrids for Rural Electrification: A Case Study of Remote Communities in Bolivia," Energies, MDPI, vol. 13(4), pages 1-26, February.
  9. Higinio Sánchez-Sáinz & Carlos-Andrés García-Vázquez & Francisco Llorens Iborra & Luis M. Fernández-Ramírez, 2019. "Methodology for the Optimal Design of a Hybrid Charging Station of Electric and Fuel Cell Vehicles Supplied by Renewable Energies and an Energy Storage System," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
  10. Domenech, B. & Ranaboldo, M. & Ferrer-Martí, L. & Pastor, R. & Flynn, D., 2018. "Local and regional microgrid models to optimise the design of isolated electrification projects," Renewable Energy, Elsevier, vol. 119(C), pages 795-808.
  11. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
  12. Zhisong Chen & Keith C. K. Cheung & Xiangtong Qi, 2021. "Subsidy policies and operational strategies for multiple competing photovoltaic supply chains," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 914-955, December.
  13. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
  14. López-González, A. & Domenech, B. & Gómez-Hernández, D. & Ferrer-Martí, L., 2017. "Renewable microgrid projects for autonomous small-scale electrification in Andean countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1255-1265.
  15. Billionnet, Alain & Costa, Marie-Christine & Poirion, Pierre-Louis, 2016. "Robust optimal sizing of a hybrid energy stand-alone system," European Journal of Operational Research, Elsevier, vol. 254(2), pages 565-575.
  16. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
  17. Ndwali, Kasereka & Njiri, Jackson G. & Wanjiru, Evan M., 2020. "Multi-objective optimal sizing of grid connected photovoltaic batteryless system minimizing the total life cycle cost and the grid energy," Renewable Energy, Elsevier, vol. 148(C), pages 1256-1265.
  18. Massol, Olivier & Banal-Estañol, Albert, 2014. "Export diversification through resource-based industrialization: The case of natural gas," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1067-1082.
  19. Ameling, Justus & Gust, Gunther, 2024. "Automated feeder routing for underground electricity distribution networks based on aerial images," European Journal of Operational Research, Elsevier, vol. 318(2), pages 629-641.
  20. Hanif Malekpoor & Konstantinos Chalvatzis & Nishikant Mishra & Amar Ramudhin, 2019. "A hybrid approach of VIKOR and bi-objective integer linear programming for electrification planning in a disaster relief camp," Annals of Operations Research, Springer, vol. 283(1), pages 443-469, December.
  21. Schulte Beerbühl, S. & Fröhling, M. & Schultmann, F., 2015. "Combined scheduling and capacity planning of electricity-based ammonia production to integrate renewable energies," European Journal of Operational Research, Elsevier, vol. 241(3), pages 851-862.
  22. Tan, Yingjie & Meegahapola, Lasantha & Muttaqi, Kashem M., 2014. "A review of technical challenges in planning and operation of remote area power supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 876-889.
  23. Garcia Marrero, Luis Enrique & Arzola Ruíz, José, 2021. "Web-based tool for the decision making in photovoltaic/wind farms planning with multiple objectives," Renewable Energy, Elsevier, vol. 179(C), pages 2224-2234.
  24. Ahadi, Amir & Kang, Sang-Kyun & Lee, Jang-Ho, 2016. "A novel approach for optimal combinations of wind, PV, and energy storage system in diesel-free isolated communities," Applied Energy, Elsevier, vol. 170(C), pages 101-115.
  25. Magni, Carlo Alberto & Marchioni, Andrea & Baschieri, Davide, 2022. "Impact of financing and payout policy on the economic profitability of solar photovoltaic plants," International Journal of Production Economics, Elsevier, vol. 244(C).
  26. Zhang, Debao & Liu, Junwei & Jiao, Shifei & Tian, Hao & Lou, Chengzhi & Zhou, Zhihua & Zhang, Ji & Wang, Chendong & Zuo, Jian, 2019. "Research on the configuration and operation effect of the hybrid solar-wind-battery power generation system based on NSGA-II," Energy, Elsevier, vol. 189(C).
  27. Merkel, Erik & Fehrenbach, Daniel & McKenna, Russell & Fichtner, Wolf, 2014. "Modelling decentralised heat supply: An application and methodological extension in TIMES," Energy, Elsevier, vol. 73(C), pages 592-605.
  28. Ranaboldo, Matteo & García-Villoria, Alberto & Ferrer-Martí, Laia & Pastor Moreno, Rafael, 2014. "A heuristic method to design autonomous village electrification projects with renewable energies," Energy, Elsevier, vol. 73(C), pages 96-109.
  29. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
  30. Attia, Ahmed M. & Al Hanbali, Ahmad & Saleh, Haitham H. & Alsawafy, Omar G. & Ghaithan, Ahmed M. & Mohammed, Awsan, 2021. "A multi-objective optimization model for sizing decisions of a grid-connected photovoltaic system," Energy, Elsevier, vol. 229(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.