IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v191y2008i3p636-649.html
   My bibliography  Save this item

Variable neighborhood search for minimum cost berth allocation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
  2. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
  3. J Euchi & H Chabchoub, 2011. "Hybrid metaheuristics for the profitable arc tour problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 2013-2022, November.
  4. Lalla-Ruiz, Eduardo & Expósito-Izquierdo, Christopher & Melián-Batista, Belén & Moreno-Vega, J. Marcos, 2016. "A Set-Partitioning-based model for the Berth Allocation Problem under Time-Dependent Limitations," European Journal of Operational Research, Elsevier, vol. 250(3), pages 1001-1012.
  5. Yongpei Guan & Kang-Hung Yang & Zhili Zhou, 2013. "The crane scheduling problem: models and solution approaches," Annals of Operations Research, Springer, vol. 203(1), pages 119-139, March.
  6. Qingcheng Zeng & Yuanjun Feng & Zigen Chen, 2017. "Optimizing berth allocation and storage space in direct transshipment operations at container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(3), pages 474-503, August.
  7. Changchun Liu & Xi Xiang & Li Zheng, 2017. "Two decision models for berth allocation problem under uncertainty considering service level," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 312-344, December.
  8. Wang, Chong & Liu, Kaiyuan & Zhang, Canrong & Miao, Lixin, 2024. "Distributionally robust chance-constrained optimization for the integrated berth allocation and quay crane assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
  9. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
  10. Ursavas, Evrim & Zhu, Stuart X., 2016. "Optimal policies for the berth allocation problem under stochastic nature," European Journal of Operational Research, Elsevier, vol. 255(2), pages 380-387.
  11. Shih-Wei Lin & Ching-Jung Ting & Kun-Chih Wu, 2018. "Simulated annealing with different vessel assignment strategies for the continuous berth allocation problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 740-763, December.
  12. Arijit De & Saurabh Pratap & Akhilesh Kumar & M. K. Tiwari, 2020. "A hybrid dynamic berth allocation planning problem with fuel costs considerations for container terminal port using chemical reaction optimization approach," Annals of Operations Research, Springer, vol. 290(1), pages 783-811, July.
  13. Sayyed Hassan Hatami Nasab & Ali Sanayei & S. F. Amiri Aghdaei & Ali Kazemi, 2016. "Using Dry Ports to Facilitate International Trade in Iran; A Model of Success Factors for Implementation of Dry Ports," Modern Applied Science, Canadian Center of Science and Education, vol. 10(3), pages 155-155, March.
  14. Zhen, Lu & Lee, Loo Hay & Chew, Ek Peng, 2011. "A decision model for berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 212(1), pages 54-68, July.
  15. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
  16. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
  17. Changchun Liu & Xi Xiang & Li Zheng, 2020. "A two-stage robust optimization approach for the berth allocation problem under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 425-452, June.
  18. Hiba Yahyaoui & Islem Kaabachi & Saoussen Krichen & Abdulkader Dekdouk, 2020. "Two metaheuristic approaches for solving the multi-compartment vehicle routing problem," Operational Research, Springer, vol. 20(4), pages 2085-2108, December.
  19. Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
  20. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
  21. Buddhi A. Weerasinghe & H. Niles Perera & Xiwen Bai, 2024. "Optimizing container terminal operations: a systematic review of operations research applications," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(2), pages 307-341, June.
  22. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
  23. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
  24. Hsien-Pin Hsu & Tai-Lin Chiang & Chia-Nan Wang & Hsin-Pin Fu & Chien-Chang Chou, 2019. "A Hybrid GA with Variable Quay Crane Assignment for Solving Berth Allocation Problem and Quay Crane Assignment Problem Simultaneously," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
  25. Olivera Janković & Stefan Mišković & Zorica Stanimirović & Raca Todosijević, 2017. "Novel formulations and VNS-based heuristics for single and multiple allocation p-hub maximal covering problems," Annals of Operations Research, Springer, vol. 259(1), pages 191-216, December.
  26. Xu, Dongsheng & Li, Chung-Lun & Leung, Joseph Y.-T., 2012. "Berth allocation with time-dependent physical limitations on vessels," European Journal of Operational Research, Elsevier, vol. 216(1), pages 47-56.
  27. J Blazewicz & T C E Cheng & M Machowiak & C Oguz, 2011. "Berth and quay crane allocation: a moldable task scheduling model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1189-1197, July.
  28. Wawrzyniak, Jakub & Drozdowski, Maciej & Sanlaville, Éric, 2020. "Selecting algorithms for large berth allocation problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 844-862.
  29. Ilic, Aleksandar & Urosevic, Dragan & Brimberg, Jack & Mladenovic, Nenad, 2010. "A general variable neighborhood search for solving the uncapacitated single allocation p-hub median problem," European Journal of Operational Research, Elsevier, vol. 206(2), pages 289-300, October.
  30. Xiang, Xi & Liu, Changchun & Miao, Lixin, 2017. "A bi-objective robust model for berth allocation scheduling under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 294-319.
  31. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
  32. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.
  33. Souza, M.J.F. & Coelho, I.M. & Ribas, S. & Santos, H.G. & Merschmann, L.H.C., 2010. "A hybrid heuristic algorithm for the open-pit-mining operational planning problem," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1041-1051, December.
  34. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
  35. Changchun Liu & Xi Xiang & Canrong Zhang & Li Zheng, 2016. "A Decision Model for Berth Allocation Under Uncertainty Considering Service Level Using an Adaptive Differential Evolution Algorithm," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-28, December.
  36. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
  37. Iris, Çağatay & Pacino, Dario & Ropke, Stefan, 2017. "Improved formulations and an Adaptive Large Neighborhood Search heuristic for the integrated berth allocation and quay crane assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 123-147.
  38. Evrim Ursavas, 2022. "Priority control of berth allocation problem in container terminals," Annals of Operations Research, Springer, vol. 317(2), pages 805-824, October.
  39. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  40. Fan Bu & Heather Nachtmann, 2023. "Literature review and comparative analysis of inland waterways transport: “Container on Barge”," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 140-173, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.