IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v182y2007i2p514-535.html
   My bibliography  Save this item

Parallel radial basis function methods for the global optimization of expensive functions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fani Boukouvala & M. M. Faruque Hasan & Christodoulos A. Floudas, 2017. "Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption," Journal of Global Optimization, Springer, vol. 67(1), pages 3-42, January.
  2. Nadia Martinez & Hadis Anahideh & Jay M. Rosenberger & Diana Martinez & Victoria C. P. Chen & Bo Ping Wang, 2017. "Global optimization of non-convex piecewise linear regression splines," Journal of Global Optimization, Springer, vol. 68(3), pages 563-586, July.
  3. Juliane Müller, 2017. "SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 581-596, November.
  4. Juliane Müller & Jangho Park & Reetik Sahu & Charuleka Varadharajan & Bhavna Arora & Boris Faybishenko & Deborah Agarwal, 2021. "Surrogate optimization of deep neural networks for groundwater predictions," Journal of Global Optimization, Springer, vol. 81(1), pages 203-231, September.
  5. Komarudin & Tim De Feyter & Marie-Anne Guerry & Greet Vanden Berghe, 2020. "The extended roster quality staffing problem: addressing roster quality variation within a staffing planning period," Journal of Scheduling, Springer, vol. 23(2), pages 253-264, April.
  6. Hau T. Mai & Jaewook Lee & Joowon Kang & H. Nguyen-Xuan & Jaehong Lee, 2022. "An Improved Blind Kriging Surrogate Model for Design Optimization Problems," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
  7. Zhe Zhou & Fusheng Bai, 2018. "An adaptive framework for costly black-box global optimization based on radial basis function interpolation," Journal of Global Optimization, Springer, vol. 70(4), pages 757-781, April.
  8. M. Joseane F. G. Macêdo & Elizabeth W. Karas & M. Fernanda P. Costa & Ana Maria A. C. Rocha, 2020. "Filter-based stochastic algorithm for global optimization," Journal of Global Optimization, Springer, vol. 77(4), pages 777-805, August.
  9. Chow, Joseph Y.J. & Regan, Amelia C., 2011. "Network-based real option models," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 682-695, May.
  10. Tipaluck Krityakierne & Taimoor Akhtar & Christine A. Shoemaker, 2016. "SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems," Journal of Global Optimization, Springer, vol. 66(3), pages 417-437, November.
  11. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
  12. Wu, Xin & Zheng, Yi & Wu, Bin & Tian, Yong & Han, Feng & Zheng, Chunmiao, 2016. "Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach," Agricultural Water Management, Elsevier, vol. 163(C), pages 380-392.
  13. Juliane Müller & Joshua D. Woodbury, 2017. "GOSAC: global optimization with surrogate approximation of constraints," Journal of Global Optimization, Springer, vol. 69(1), pages 117-136, September.
  14. Andrea Cassioli & Fabio Schoen, 2013. "Global optimization of expensive black box problems with a known lower bound," Journal of Global Optimization, Springer, vol. 57(1), pages 177-190, September.
  15. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
  16. Rommel Regis & Christine Shoemaker, 2013. "A quasi-multistart framework for global optimization of expensive functions using response surface models," Journal of Global Optimization, Springer, vol. 56(4), pages 1719-1753, August.
  17. Richard T. Lyons & Richard C. Peralta & Partha Majumder, 2020. "Comparing Single-Objective Optimization Protocols for Calibrating the Birds Nest Aquifer Model—A Problem Having Multiple Local Optima," IJERPH, MDPI, vol. 17(3), pages 1-10, January.
  18. Wenyu Wang & Christine A. Shoemaker, 2023. "Reference Vector Assisted Candidate Search with Aggregated Surrogate for Computationally Expensive Many Objective Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 318-334, March.
  19. Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Pseudo expected improvement criterion for parallel EGO algorithm," Journal of Global Optimization, Springer, vol. 68(3), pages 641-662, July.
  20. Belmiro P. M. Duarte & Anthony C. Atkinson & Satya P. Singh & Marco S. Reis, 2023. "Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests," Statistical Papers, Springer, vol. 64(2), pages 587-615, April.
  21. M Laguna & J Molina & F Pérez & R Caballero & A G Hernández-Díaz, 2010. "The challenge of optimizing expensive black boxes: a scatter search/rough set theory approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 53-67, January.
  22. Charles Audet & Edward Hallé-Hannan & Sébastien Le Digabel, 2023. "A General Mathematical Framework for Constrained Mixed-variable Blackbox Optimization Problems with Meta and Categorical Variables," SN Operations Research Forum, Springer, vol. 4(1), pages 1-37, March.
  23. Juliane Müller & Marcus Day, 2019. "Surrogate Optimization of Computationally Expensive Black-Box Problems with Hidden Constraints," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 689-702, October.
  24. Juliane Müller & Christine Shoemaker & Robert Piché, 2014. "SO-I: a surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applications," Journal of Global Optimization, Springer, vol. 59(4), pages 865-889, August.
  25. Juliane Müller & Christine Shoemaker, 2014. "Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 123-144, October.
  26. Chen, Mingjie & Tompson, Andrew F.B. & Mellors, Robert J. & Ramirez, Abelardo L. & Dyer, Kathleen M. & Yang, Xianjin & Wagoner, Jeffrey L., 2014. "An efficient Bayesian inversion of a geothermal prospect using a multivariate adaptive regression spline method," Applied Energy, Elsevier, vol. 136(C), pages 619-627.
  27. Chen, Mingjie & Tompson, Andrew F.B. & Mellors, Robert J. & Abdalla, Osman, 2015. "An efficient optimization of well placement and control for a geothermal prospect under geological uncertainty," Applied Energy, Elsevier, vol. 137(C), pages 352-363.
  28. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
  29. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2022. "Optimal deployment of autonomous buses into a transit service network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
  30. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
  31. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
  32. Ray-Bing Chen & Yuan Wang & C. F. Jeff Wu, 2020. "Finding optimal points for expensive functions using adaptive RBF-based surrogate model via uncertainty quantification," Journal of Global Optimization, Springer, vol. 77(4), pages 919-948, August.
  33. Siem, A.Y.D. & den Hertog, D., 2007. "Kriging Models That Are Robust With Respect to Simulation Errors," Other publications TiSEM fe73dc8b-20d6-4f50-95eb-f, Tilburg University, School of Economics and Management.
  34. Logan Mathesen & Giulia Pedrielli & Szu Hui Ng & Zelda B. Zabinsky, 2021. "Stochastic optimization with adaptive restart: a framework for integrated local and global learning," Journal of Global Optimization, Springer, vol. 79(1), pages 87-110, January.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.