IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i3p853-d314330.html
   My bibliography  Save this article

Comparing Single-Objective Optimization Protocols for Calibrating the Birds Nest Aquifer Model—A Problem Having Multiple Local Optima

Author

Listed:
  • Richard T. Lyons

    (Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322-4110, USA)

  • Richard C. Peralta

    (Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322-4110, USA)

  • Partha Majumder

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 211100, Jiangsu, China)

Abstract

To best represent reality, simulation models of environmental and health-related systems might be very nonlinear. Model calibration ideally identifies globally optimal sets of parameters to use for subsequent prediction. For a nonlinear system having multiple local optima, calibration can be tedious. For such a system, we contrast calibration results from PEST, a commonly used automated parameter estimation program versus several meta-heuristic global optimizers available as external packages for the Python computer language—the Gray Wolf Optimization (GWO) algorithm; the DYCORS optimizer framework with a Radial Basis Function surrogate simulator (DRB); and particle swarm optimization (PSO). We ran each optimizer 15 times, with nearly 10,000 MODFLOW simulations per run for the global optimizers, to calibrate a steady-state, groundwater flow simulation model of the complex Birds Nest aquifer, a three-layer system having 8 horizontal hydraulic conductivity zones and 25 head observation locations. In calibrating the eight hydraulic conductivity values, GWO averaged the best root mean squared error (RMSE) between observed and simulated heads—20 percent better (lower) than the next lowest optimizer, DRB. The best PEST run matched the best GWO RMSE, but both the average PEST RMSE and the range of PEST RMSE results were an order of magnitude larger than any of the global optimizers.

Suggested Citation

  • Richard T. Lyons & Richard C. Peralta & Partha Majumder, 2020. "Comparing Single-Objective Optimization Protocols for Calibrating the Birds Nest Aquifer Model—A Problem Having Multiple Local Optima," IJERPH, MDPI, vol. 17(3), pages 1-10, January.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:853-:d:314330
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/3/853/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/3/853/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Regis, Rommel G. & Shoemaker, Christine A., 2007. "Parallel radial basis function methods for the global optimization of expensive functions," European Journal of Operational Research, Elsevier, vol. 182(2), pages 514-535, October.
    2. Partha Majumder & T.I. Eldho, 2020. "Artificial Neural Network and Grey Wolf Optimizer Based Surrogate Simulation-Optimization Model for Groundwater Remediation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 763-783, January.
    3. Rommel G. Regis & Christine A. Shoemaker, 2007. "A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 497-509, November.
    4. O. Haddad & M. Tabari & E. Fallah-Mehdipour & M. Mariño, 2013. "Groundwater Model Calibration by Meta-Heuristic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2515-2529, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juliane Müller, 2017. "SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 581-596, November.
    2. Juliane Müller & Christine Shoemaker & Robert Piché, 2014. "SO-I: a surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applications," Journal of Global Optimization, Springer, vol. 59(4), pages 865-889, August.
    3. Zhe Zhou & Fusheng Bai, 2018. "An adaptive framework for costly black-box global optimization based on radial basis function interpolation," Journal of Global Optimization, Springer, vol. 70(4), pages 757-781, April.
    4. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    5. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
    6. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    7. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    8. Juliane Müller & Christine Shoemaker, 2014. "Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems," Journal of Global Optimization, Springer, vol. 60(2), pages 123-144, October.
    9. Chen, Mingjie & Tompson, Andrew F.B. & Mellors, Robert J. & Abdalla, Osman, 2015. "An efficient optimization of well placement and control for a geothermal prospect under geological uncertainty," Applied Energy, Elsevier, vol. 137(C), pages 352-363.
    10. Juliane Müller & Joshua D. Woodbury, 2017. "GOSAC: global optimization with surrogate approximation of constraints," Journal of Global Optimization, Springer, vol. 69(1), pages 117-136, September.
    11. Belmiro P. M. Duarte & Anthony C. Atkinson & Satya P. Singh & Marco S. Reis, 2023. "Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests," Statistical Papers, Springer, vol. 64(2), pages 587-615, April.
    12. Charles Audet & Edward Hallé-Hannan & Sébastien Le Digabel, 2023. "A General Mathematical Framework for Constrained Mixed-variable Blackbox Optimization Problems with Meta and Categorical Variables," SN Operations Research Forum, Springer, vol. 4(1), pages 1-37, March.
    13. Siem, A.Y.D. & den Hertog, D., 2007. "Kriging Models That Are Robust With Respect to Simulation Errors," Other publications TiSEM fe73dc8b-20d6-4f50-95eb-f, Tilburg University, School of Economics and Management.
    14. Hau T. Mai & Jaewook Lee & Joowon Kang & H. Nguyen-Xuan & Jaehong Lee, 2022. "An Improved Blind Kriging Surrogate Model for Design Optimization Problems," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
    15. Chow, Joseph Y.J. & Regan, Amelia C., 2011. "Network-based real option models," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 682-695, May.
    16. Wu, Xin & Zheng, Yi & Wu, Bin & Tian, Yong & Han, Feng & Zheng, Chunmiao, 2016. "Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: A surrogate modeling approach," Agricultural Water Management, Elsevier, vol. 163(C), pages 380-392.
    17. Rommel Regis & Christine Shoemaker, 2013. "A quasi-multistart framework for global optimization of expensive functions using response surface models," Journal of Global Optimization, Springer, vol. 56(4), pages 1719-1753, August.
    18. Chen, Mingjie & Tompson, Andrew F.B. & Mellors, Robert J. & Ramirez, Abelardo L. & Dyer, Kathleen M. & Yang, Xianjin & Wagoner, Jeffrey L., 2014. "An efficient Bayesian inversion of a geothermal prospect using a multivariate adaptive regression spline method," Applied Energy, Elsevier, vol. 136(C), pages 619-627.
    19. Nadia Martinez & Hadis Anahideh & Jay M. Rosenberger & Diana Martinez & Victoria C. P. Chen & Bo Ping Wang, 2017. "Global optimization of non-convex piecewise linear regression splines," Journal of Global Optimization, Springer, vol. 68(3), pages 563-586, July.
    20. Juliane Müller & Jangho Park & Reetik Sahu & Charuleka Varadharajan & Bhavna Arora & Boris Faybishenko & Deborah Agarwal, 2021. "Surrogate optimization of deep neural networks for groundwater predictions," Journal of Global Optimization, Springer, vol. 81(1), pages 203-231, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:853-:d:314330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.