IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v180y2007i1p354-368.html
   My bibliography  Save this item

Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wauters, Mathieu & Vanhoucke, Mario, 2017. "A Nearest Neighbour extension to project duration forecasting with Artificial Intelligence," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1097-1111.
  2. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
  3. Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
  4. Ciyun Lin & Kang Wang & Dayong Wu & Bowen Gong, 2020. "Passenger Flow Prediction Based on Land Use around Metro Stations: A Case Study," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
  5. Katsikopoulos, Konstantinos V. & Durbach, Ian N. & Stewart, Theodor J., 2018. "When should we use simple decision models? A synthesis of various research strands," Omega, Elsevier, vol. 81(C), pages 17-25.
  6. Bozos, Konstantinos & Nikolopoulos, Konstantinos, 2011. "Forecasting the value effect of seasoned equity offering announcements," European Journal of Operational Research, Elsevier, vol. 214(2), pages 418-427, October.
  7. Dinesh Reddy Vangumalli & Konstantinos Nikolopoulos & Konstantia Litsiou, 2019. "Clustering, Forecasting and Cluster Forecasting: using k-medoids, k-NNs and random forests for cluster selection," Working Papers 19016, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
  8. Lee, Wing Yee & Goodwin, Paul & Fildes, Robert & Nikolopoulos, Konstantinos & Lawrence, Michael, 2007. "Providing support for the use of analogies in demand forecasting tasks," International Journal of Forecasting, Elsevier, vol. 23(3), pages 377-390.
  9. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  10. Jiang, Wuhao & Wang, Kai & Lv, Yan & Guo, Jianfeng & Ni, Zhongjin & Ni, Yihua, 2020. "Time series based behavior pattern quantification analysis and prediction — A study on animal behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
  11. Danaher, Peter J. & Dagger, Tracey S. & Smith, Michael S., 2011. "Forecasting television ratings," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1215-1240, October.
  12. Green, Kesten C. & Armstrong, J. Scott, 2015. "Simple versus complex forecasting: The evidence," Journal of Business Research, Elsevier, vol. 68(8), pages 1678-1685.
  13. Vincenzo Candila & Lucio Palazzo, 2020. "Neural Networks and Betting Strategies for Tennis," Risks, MDPI, vol. 8(3), pages 1-19, June.
  14. Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).
  15. Litsiou, Konstantia & Polychronakis, Yiannis & Karami, Azhdar & Nikolopoulos, Konstantinos, 2022. "Relative performance of judgmental methods for forecasting the success of megaprojects," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1185-1196.
  16. Nikolopoulos, Konstantinos & Litsa, Akrivi & Petropoulos, Fotios & Bougioukos, Vasileios & Khammash, Marwan, 2015. "Relative performance of methods for forecasting special events," Journal of Business Research, Elsevier, vol. 68(8), pages 1785-1791.
  17. Danaher, Peter & Dagger, Tracey, 2012. "Using a nested logit model to forecast television ratings," International Journal of Forecasting, Elsevier, vol. 28(3), pages 607-622.
  18. Giwoong Bae & Hye-jin Kim, 2022. "The impact of online video highlights on TV audience ratings," Electronic Commerce Research, Springer, vol. 22(2), pages 405-425, June.
  19. Lessmann, Stefan & Voß, Stefan, 2017. "Car resale price forecasting: The impact of regression method, private information, and heterogeneity on forecast accuracy," International Journal of Forecasting, Elsevier, vol. 33(4), pages 864-877.
  20. Konstantinos Nikolopoulos, 2010. "Forecasting with quantitative methods: the impact of special events in time series," Applied Economics, Taylor & Francis Journals, vol. 42(8), pages 947-955.
  21. Servranckx, Tom & Vanhoucke, Mario & Aouam, Tarik, 2021. "Practical application of reference class forecasting for cost and time estimations: Identifying the properties of similarity," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1161-1179.
  22. Nikolopoulos, Konstantinos, 2021. "We need to talk about intermittent demand forecasting," European Journal of Operational Research, Elsevier, vol. 291(2), pages 549-559.
  23. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
  24. Eksoz, Can & Mansouri, S. Afshin & Bourlakis, Michael, 2014. "Collaborative forecasting in the food supply chain: A conceptual framework," International Journal of Production Economics, Elsevier, vol. 158(C), pages 120-135.
  25. S. Buxton & Kostas Nikolopoulos & M. Khammash & P. Stern, 2015. "Modelling and Forecasting Branded and Generic Pharmaceutical Life Cycles: Assessment of the Number of Dispensed Units," Working Papers 15004, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
  26. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
  27. Tine Van Calster & Filip Van den Bossche & Bart Baesens & Wilfried Lemahieu, 2020. "Profit-oriented sales forecasting: a comparison of forecasting techniques from a business perspective," Papers 2002.00949, arXiv.org.
  28. Van Reeth, Daam, 2019. "Forecasting Tour de France TV audiences: A multi-country analysis," International Journal of Forecasting, Elsevier, vol. 35(2), pages 810-821.
  29. Nikolopoulos, Konstantinos I. & Babai, M. Zied & Bozos, Konstantinos, 2016. "Forecasting supply chain sporadic demand with nearest neighbor approaches," International Journal of Production Economics, Elsevier, vol. 177(C), pages 139-148.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.