IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v127y2000i2p425-443.html
   My bibliography  Save this item

Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Etgar, Ran & Gelbard, Roy & Cohen, Yuval, 2017. "Optimizing version release dates of research and development long-term processes," European Journal of Operational Research, Elsevier, vol. 259(2), pages 642-653.
  2. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
  3. Wolff, Pascal & Emde, Simon & Pfohl, Hans-Christian, 2021. "Internal resource requirements: The better performance metric for truck scheduling?," Omega, Elsevier, vol. 103(C).
  4. Rostami, Salim & Creemers, Stefan & Leus, Roel, 2024. "Maximizing the net present value of a project under uncertainty: Activity delays and dynamic policies," European Journal of Operational Research, Elsevier, vol. 317(1), pages 16-24.
  5. Carvalho, Andréa Nunes & Oliveira, Fabricio & Scavarda, Luiz Felipe, 2016. "Tactical capacity planning in a real-world ETO industry case: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 180(C), pages 158-171.
  6. Hongbo Li & Linwen Zheng & Hanyu Zhu, 2023. "Resource leveling in projects with flexible structures," Annals of Operations Research, Springer, vol. 321(1), pages 311-342, February.
  7. Rieck, Julia & Zimmermann, Jürgen & Gather, Thorsten, 2012. "Mixed-integer linear programming for resource leveling problems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 27-37.
  8. Milička, P. & Šůcha, P. & Vanhoucke, M. & Maenhout, B., 2022. "The bilevel optimisation of a multi-agent project scheduling and staffing problem," European Journal of Operational Research, Elsevier, vol. 296(1), pages 72-86.
  9. Cédric Verbeeck & Vincent Peteghem & Mario Vanhoucke & Pieter Vansteenwegen & El-Houssaine Aghezzaf, 2017. "A metaheuristic solution approach for the time-constrained project scheduling problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 353-371, March.
  10. Wiesemann, Wolfram & Kuhn, Daniel & Rustem, Berç, 2010. "Maximizing the net present value of a project under uncertainty," European Journal of Operational Research, Elsevier, vol. 202(2), pages 356-367, April.
  11. Neumann, K. & Schwindt, C. & Zimmermann, J., 2003. "Order-based neighborhoods for project scheduling with nonregular objective functions," European Journal of Operational Research, Elsevier, vol. 149(2), pages 325-343, September.
  12. Abdollah Arasteh, 2020. "Considering Project Management Activities for Engineering Design Groups," SN Operations Research Forum, Springer, vol. 1(4), pages 1-29, December.
  13. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
  14. Hartmann, Sönke, 2011. "Project scheduling with resource capacities and requests varying with time," Working Paper Series 01/2011, Hamburg School of Business Administration (HSBA).
  15. Qingyou Yan & Qian Zhang & Xin Zou, 2016. "A Cost Optimization Model for Multiresource Leveling Problem without Project Duration Constraint," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-8, July.
  16. Roland Braune & Karl F. Doerner, 2017. "Real-world flexible resource profile scheduling with multiple criteria: learning scalarization functions for MIP and heuristic approaches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 952-972, August.
  17. Thomas Selle & Jürgen Zimmermann, 2003. "A bidirectional heuristic for maximizing the net present value of large‐scale projects subject to limited resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(2), pages 130-148, March.
  18. Bartels, J.-H. & Zimmermann, J., 2009. "Scheduling tests in automotive R&D projects," European Journal of Operational Research, Elsevier, vol. 193(3), pages 805-819, March.
  19. Kreter, Stefan & Schutt, Andreas & Stuckey, Peter J. & Zimmermann, Jürgen, 2018. "Mixed-integer linear programming and constraint programming formulations for solving resource availability cost problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 472-486.
  20. Nicole Megow & Rolf H. Möhring & Jens Schulz, 2011. "Decision Support and Optimization in Shutdown and Turnaround Scheduling," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 189-204, May.
  21. Aria Shahsavar & Nima Zoraghi & Babak Abbasi, 2018. "Integration of resource investment problem with quantity discount problem in material ordering for minimizing resource costs of projects," Operational Research, Springer, vol. 18(2), pages 315-342, July.
  22. He, Zhengwen & Wang, Nengmin & Jia, Tao & Xu, Yu, 2009. "Simulated annealing and tabu search for multi-mode project payment scheduling," European Journal of Operational Research, Elsevier, vol. 198(3), pages 688-696, November.
  23. Simon Emde & Hamid Abedinnia & Anne Lange & Christoph H. Glock, 2020. "Scheduling personnel for the build-up of unit load devices at an air cargo terminal with limited space," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 397-426, June.
  24. Carvalho, Andréa Nunes & Oliveira, Fabricio & Scavarda, Luiz Felipe, 2015. "Tactical capacity planning in a real-world ETO industry case: An action research," International Journal of Production Economics, Elsevier, vol. 167(C), pages 187-203.
  25. M. Vanhoucke, 2006. "An efficient hybrid search algorithm for various optimization problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/365, Ghent University, Faculty of Economics and Business Administration.
  26. Creemers, Stefan, 2018. "Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient globally optimal solution procedure," European Journal of Operational Research, Elsevier, vol. 267(1), pages 16-22.
  27. Drótos, Márton & Kis, Tamás, 2011. "Resource leveling in a machine environment," European Journal of Operational Research, Elsevier, vol. 212(1), pages 12-21, July.
  28. Siqing Shan & Zhongjun Hu & Zhilian Liu & Jihong Shi & Li Wang & Zhuming Bi, 2017. "An adaptive genetic algorithm for demand-driven and resource-constrained project scheduling in aircraft assembly," Information Technology and Management, Springer, vol. 18(1), pages 41-53, March.
  29. Györgyi, Péter & Kis, Tamás, 2020. "A common approximation framework for early work, late work, and resource leveling problems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 129-137.
  30. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
  31. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
  32. Colvin, Matthew & Maravelias, Christos T., 2011. "R&D pipeline management: Task interdependencies and risk management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 616-628, December.
  33. Hongbo Li & Erik Demeulemeester, 2016. "A genetic algorithm for the robust resource leveling problem," Journal of Scheduling, Springer, vol. 19(1), pages 43-60, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.