IDEAS home Printed from https://ideas.repec.org/r/eee/econom/v177y2013i2p320-342.html
   My bibliography  Save this item

A Markov-switching multifractal inter-trade duration model, with application to US equities

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pierre Perron & Eduardo Zorita & Wen Cao & Clifford Hurvich & Philippe Soulier, 2017. "Drift in Transaction-Level Asset Price Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 769-790, September.
  2. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
  3. Peter Akioyamen & Yi Zhou Tang & Hussien Hussien, 2021. "A Hybrid Learning Approach to Detecting Regime Switches in Financial Markets," Papers 2108.05801, arXiv.org.
  4. Jorge Pérez-Rodríguez & Emilio Gómez-Déniza & Simón Sosvilla-Rivero, 2019. "“Testing for private information using trade duration models with unobserved market heterogeneity: The case of Banco Popular”," IREA Working Papers 201907, University of Barcelona, Research Institute of Applied Economics, revised Apr 2019.
  5. Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.
  6. Xin-Lan Fu & Xing-Lu Gao & Zheng Shan & Zhi-Qiang Jiang & Wei-Xing Zhou, 2018. "Multifractal characteristics and return predictability in the Chinese stock markets," Papers 1806.07604, arXiv.org.
  7. Filip Žikeš & Jozef Baruník & Nikhil Shenai, 2017. "Modeling and forecasting persistent financial durations," Econometric Reviews, Taylor & Francis Journals, vol. 36(10), pages 1081-1110, November.
  8. Abdelhakim Aknouche & Christian Francq, 2022. "Stationarity and ergodicity of Markov switching positive conditional mean models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 436-459, May.
  9. Jeffrey R. Black & Pankaj K. Jain & Wei Sun, 2023. "Trade-time clustering," Review of Quantitative Finance and Accounting, Springer, vol. 60(3), pages 1209-1242, April.
  10. Eric M. Aldrich & Indra Heckenbach & Gregory Laughlin, 2014. "The Random Walk of High Frequency Trading," Papers 1408.3650, arXiv.org, revised Aug 2014.
  11. Zhicheng Li & Haipeng Xing, 2022. "High-Frequency Quote Volatility Measurement Using a Change-Point Intensity Model," Mathematics, MDPI, vol. 10(4), pages 1-24, February.
  12. Li, Zhicheng & Chen, Xinyun & Xing, Haipeng, 2023. "A multifactor regime-switching model for inter-trade durations in the high-frequency limit order market," Economic Modelling, Elsevier, vol. 118(C).
  13. Yogo Purwono & Irwan Adi Ekaputra & Zaäfri Ananto Husodo, 2018. "Estimation of Dynamic Mixed Hitting Time Model Using Characteristic Function Based Moments," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 295-321, February.
  14. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
  15. Czellar, Veronika & Frazier, David T. & Renault, Eric, 2022. "Approximate maximum likelihood for complex structural models," Journal of Econometrics, Elsevier, vol. 231(2), pages 432-456.
  16. Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
  17. Pérez-Rodríguez, Jorge V. & Gómez-Déniz, Emilio & Sosvilla-Rivero, Simón, 2021. "Testing unobserved market heterogeneity in financial markets: The case of Banco Popular," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 151-160.
  18. Kuosmanen, Petri & Nabulsi, Nasib & Vataja, Juuso, 2015. "Financial variables and economic activity in the Nordic countries," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 368-379.
  19. Zhicheng Li & Haipeng Xing & Xinyun Chen, 2019. "A multifactor regime-switching model for inter-trade durations in the limit order market," Papers 1912.00764, arXiv.org.
  20. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
  21. Augustyniak, Maciej & Dufays, Arnaud, 2018. "Modeling macroeconomic series with regime-switching models characterized by a high-dimensional state space," Economics Letters, Elsevier, vol. 170(C), pages 122-126.
  22. de Bruijn, L.P. & Franses, Ph.H.B.F., 2015. "Stochastic levels and duration dependence in US unemployment," Econometric Institute Research Papers EI2015-20, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  23. Marcin Wątorek & Jarosław Kwapień & Stanisław Drożdż, 2022. "Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time," Future Internet, MDPI, vol. 14(7), pages 1-15, July.
  24. Veronika Czellar & David T. Frazier & Eric Renault, 2020. "Approximate Maximum Likelihood for Complex Structural Models," Papers 2006.10245, arXiv.org.
  25. Lux, Thomas, 2013. "Exact solutions for the transient densities of continuous-time Markov switching models: With an application to the poisson multifractal model," Kiel Working Papers 1871, Kiel Institute for the World Economy (IfW Kiel).
  26. Suh, Jong Hwan, 2015. "Forecasting the daily outbreak of topic-level political risk from social media using hidden Markov model-based techniques," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 115-132.
  27. Brownlees Christian T. & Vannucci Marina, 2013. "A Bayesian approach for capturing daily heterogeneity in intra-daily durations time series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 21-46, February.
  28. Farzad Alavi Fard, 2014. "Optimal Bid-Ask Spread in Limit-Order Books under Regime Switching Framework," Review of Economics & Finance, Better Advances Press, Canada, vol. 4, pages 33-48, November.
  29. Czellar, Veronika & Frazier, David T. & Renault, Eric, 2021. "Approximate Maximum Likelihood for Complex Structural Models," The Warwick Economics Research Paper Series (TWERPS) 1337, University of Warwick, Department of Economics.
  30. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2022. "Multifractal cross-correlations of bitcoin and ether trading characteristics in the post-COVID-19 time," Papers 2208.01445, arXiv.org.
  31. Renault, Eric & van der Heijden, Thijs & Werker, Bas J.M., 2014. "The dynamic mixed hitting-time model for multiple transaction prices and times," Journal of Econometrics, Elsevier, vol. 180(2), pages 233-250.
  32. Kang, Bo Soo & Ryu, Doojin & Ryu, Doowon, 2014. "Phase-shifting behaviour revisited: An alternative measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 167-173.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.