IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2108.05801.html
   My bibliography  Save this paper

A Hybrid Learning Approach to Detecting Regime Switches in Financial Markets

Author

Listed:
  • Peter Akioyamen

    (Western University)

  • Yi Zhou Tang

    (Western University)

  • Hussien Hussien

    (Western University)

Abstract

Financial markets are of much interest to researchers due to their dynamic and stochastic nature. With their relations to world populations, global economies and asset valuations, understanding, identifying and forecasting trends and regimes are highly important. Attempts have been made to forecast market trends by employing machine learning methodologies, while statistical techniques have been the primary methods used in developing market regime switching models used for trading and hedging. In this paper we present a novel framework for the detection of regime switches within the US financial markets. Principal component analysis is applied for dimensionality reduction and the k-means algorithm is used as a clustering technique. Using a combination of cluster analysis and classification, we identify regimes in financial markets based on publicly available economic data. We display the efficacy of the framework by constructing and assessing the performance of two trading strategies based on detected regimes.

Suggested Citation

  • Peter Akioyamen & Yi Zhou Tang & Hussien Hussien, 2021. "A Hybrid Learning Approach to Detecting Regime Switches in Financial Markets," Papers 2108.05801, arXiv.org.
  • Handle: RePEc:arx:papers:2108.05801
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2108.05801
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cipriani Marco & Guarino Antonio, 2008. "Herd Behavior and Contagion in Financial Markets," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 8(1), pages 1-56, October.
    2. Alizadeh, Amir H. & Nomikos, Nikos K. & Pouliasis, Panos K., 2008. "A Markov regime switching approach for hedging energy commodities," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1970-1983, September.
    3. Corhay, A. & Tourani Rad, A. & Urbain, J. -P., 1993. "Common stochastic trends in European stock markets," Economics Letters, Elsevier, vol. 42(4), pages 385-390.
    4. Chiang, Thomas C. & Zheng, Dazhi, 2010. "An empirical analysis of herd behavior in global stock markets," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1911-1921, August.
    5. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    6. Cai, Jun, 1994. "A Markov Model of Switching-Regime ARCH," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 309-316, July.
    7. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
    8. Bali, Turan G. & Demirtas, K. Ozgur & Levy, Haim, 2008. "Nonlinear mean reversion in stock prices," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 767-782, May.
    9. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gębka, Bartosz & Wohar, Mark E., 2013. "International herding: Does it differ across sectors?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 23(C), pages 55-84.
    2. Boortz, Christopher & Kremer, Stephanie & Jurkatis, Simon & Nautz, Dieter, 2014. "Information risk, market stress and institutional herding in financial markets: New evidence through the lens of a simulated model," SFB 649 Discussion Papers 2014-029, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Wang, Xinru & Kim, Maria H. & Suardi, Sandy, 2022. "Herding and China's market-wide circuit breaker," Journal of Banking & Finance, Elsevier, vol. 141(C).
    4. Christopher Boortz & Simon Jurkatis & Stephanie Kremer & Dieter Nautz, 2013. "Institutional Herding in Financial Markets: New Evidence through the Lens of a Simulated Model," Discussion Papers of DIW Berlin 1336, DIW Berlin, German Institute for Economic Research.
    5. Dieter Nautz, "undated". "Herding in financial markets: Bridging the gap between theory and evidence," BDPEMS Working Papers 2013002, Berlin School of Economics.
    6. repec:hum:wpaper:sfb649dp2013-036 is not listed on IDEAS
    7. repec:hum:wpaper:sfb649dp2014-029 is not listed on IDEAS
    8. Bohl, Martin T. & Branger, Nicole & Trede, Mark, 2017. "The case for herding is stronger than you think," Journal of Banking & Finance, Elsevier, vol. 85(C), pages 30-40.
    9. Mathias Drehmann & Jörg Oechssler & Andreas Roider, 2005. "Herding and Contrarian Behavior in Financial Markets: An Internet Experiment," American Economic Review, American Economic Association, vol. 95(5), pages 1403-1426, December.
    10. Malik, Saif Ullah & Elahi, Muhammad Ather, 2014. "Analysis of Herd Behavior Using Quantile Regression: Evidence from Karachi Stock Exchange (KSE)," MPRA Paper 55322, University Library of Munich, Germany.
    11. Nuzzo, Simone & Morone, Andrea, 2017. "Asset markets in the lab: A literature review," Journal of Behavioral and Experimental Finance, Elsevier, vol. 13(C), pages 42-50.
    12. Reitz, Stefan, 2006. "On the predictive content of technical analysis," The North American Journal of Economics and Finance, Elsevier, vol. 17(2), pages 121-137, August.
    13. Eyster, Erik & Galeotti, Andrea & Kartik, Navin & Rabin, Matthew, 2014. "Congested observational learning," Games and Economic Behavior, Elsevier, vol. 87(C), pages 519-538.
    14. Pegah Dehghani & Ros Zam Zam Sapian, 2014. "Sectoral herding behavior in the aftermarket of Malaysian IPOs," Venture Capital, Taylor & Francis Journals, vol. 16(3), pages 227-246, July.
    15. Tsionas, Mike G. & Philippas, Dionisis & Philippas, Nikolaos, 2022. "Multivariate stochastic volatility for herding detection: Evidence from the energy sector," Energy Economics, Elsevier, vol. 109(C).
    16. Saad, Mohsen & Samet, Anis, 2020. "Collectivism and commonality in liquidity," Journal of Business Research, Elsevier, vol. 116(C), pages 137-162.
    17. Puput Tri Komalasari & Marwan Asri & Bernardinus M. Purwanto & Bowo Setiyono, 2022. "Herding behaviour in the capital market: What do we know and what is next?," Management Review Quarterly, Springer, vol. 72(3), pages 745-787, September.
    18. Jonathan E. Alevy & Michael S. Haigh & John List, 2006. "Information Cascades: Evidence from An Experiment with Financial Market Professionals," NBER Working Papers 12767, National Bureau of Economic Research, Inc.
    19. LOVO, Stefano & DECAMPS, Jean-Paul, 2002. "Risk aversion and herd behavior in financial markets," HEC Research Papers Series 758, HEC Paris.
    20. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    21. Guney, Yilmaz & Kallinterakis, Vasileios & Komba, Gabriel, 2017. "Herding in frontier markets: Evidence from African stock exchanges," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 47(C), pages 152-175.
    22. Xiong, Hang & Payne, Diane & Kinsella, Stephen, 2016. "Peer effects in the diffusion of innovations: Theory and simulation," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 63(C), pages 1-13.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2108.05801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.