IDEAS home Printed from https://ideas.repec.org/r/eee/econom/v146y2008i1p10-25.html
   My bibliography  Save this item

Indirect estimation of large conditionally heteroskedastic factor models, with an application to the Dow 30 stocks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.
  2. Arvanitis Stelios & Demos Antonis, 2018. "On the Validity of Edgeworth Expansions and Moment Approximations for Three Indirect Inference Estimators," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-38, January.
  3. Sentana, Enrique & Calzolari, Giorgio & Fiorentini, Gabriele, 2008. "Indirect estimation of large conditionally heteroskedastic factor models, with an application to the Dow 30 stocks," Journal of Econometrics, Elsevier, vol. 146(1), pages 10-25, September.
  4. Aramonte, Sirio & Giudice Rodriguez, Marius del & Wu, Jason, 2013. "Dynamic factor Value-at-Risk for large heteroskedastic portfolios," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4299-4309.
  5. Fiorentini, Gabriele & Galesi, Alessandro & Sentana, Enrique, 2018. "A spectral EM algorithm for dynamic factor models," Journal of Econometrics, Elsevier, vol. 205(1), pages 249-279.
  6. Calzolari, Giorgio & Halbleib, Roxana, 2018. "Estimating stable latent factor models by indirect inference," Journal of Econometrics, Elsevier, vol. 205(1), pages 280-301.
  7. Francesco Audrino & Fulvio Corsi & Kameliya Filipova, 2016. "Bond Risk Premia Forecasting: A Simple Approach for Extracting Macroeconomic Information from a Panel of Indicators," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 232-256, February.
  8. Anna Gottard & Giorgio Calzolari, 2014. "Alternative estimating procedures for multiple membership logit models with mixed effects: indirect inference and data cloning," Econometrics Working Papers Archive 2014_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  9. Matteo Barigozzi & Marc Hallin, 2016. "Generalized dynamic factor models and volatilities: recovering the market volatility shocks," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 33-60, February.
  10. Barigozzi, Matteo & Hallin, Marc, 2017. "Generalized dynamic factor models and volatilities: estimation and forecasting," Journal of Econometrics, Elsevier, vol. 201(2), pages 307-321.
  11. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Working Papers ECARES 2023-15, ULB -- Universite Libre de Bruxelles.
  12. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
  13. Giorgio Calzolari & Roxana Halbleib & Christian Mucher, 2023. "Sequential Estimation of Multivariate Factor Stochastic Volatility Models," Papers 2302.07052, arXiv.org.
  14. Calvet, Laurent E. & Czellar, Veronika, 2015. "Through the looking glass: Indirect inference via simple equilibria," Journal of Econometrics, Elsevier, vol. 185(2), pages 343-358.
  15. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Papers 1510.05118, arXiv.org, revised Jul 2016.
  16. Gabriele Fiorentini & Enrique Sentana, 2009. "Dynamic Specification Tests for Static Factor Models," Working Papers wp2009_0912, CEMFI.
  17. Araújo, Fabio & Issler, João Victor, 2011. "A stochastic discount factor approach to asset pricing using panel data asymptotics," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 717, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
  18. Calzolari, Giorgio & Halbleib, Roxana & Parrini, Alessandro, 2014. "Estimating GARCH-type models with symmetric stable innovations: Indirect inference versus maximum likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 158-171.
  19. Alperovych, Yan & Cumming, Douglas & Czellar, Veronika & Groh, Alexander, 2021. "M&A rumors about unlisted firms," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1324-1339.
  20. Barigozzi, Matteo & Hallin, Marc, 2020. "Generalized dynamic factor models and volatilities: Consistency, rates, and prediction intervals," Journal of Econometrics, Elsevier, vol. 216(1), pages 4-34.
  21. Kim, Donggyu & Fan, Jianqing, 2019. "Factor GARCH-Itô models for high-frequency data with application to large volatility matrix prediction," Journal of Econometrics, Elsevier, vol. 208(2), pages 395-417.
  22. Cipollini, Fabrizio & Gallo, Giampiero M., 2019. "Modeling Euro STOXX 50 volatility with common and market-specific components," Econometrics and Statistics, Elsevier, vol. 11(C), pages 22-42.
  23. Philip L. H. Yu & W. K. Li & F. C. Ng, 2017. "The Generalized Conditional Autoregressive Wishart Model for Multivariate Realized Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 513-527, October.
  24. Sentana, Enrique, 2018. "Volatility, diversification and contagion," CEPR Discussion Papers 12824, C.E.P.R. Discussion Papers.
  25. Gabriele Fiorentini & Enrique Sentana, 2012. "Tests for Serial Dependence in Static, Non-Gaussian Factor Models," Working Papers wp2012_1211, CEMFI.
  26. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.