IDEAS home Printed from https://ideas.repec.org/r/eee/econom/v137y2007i1p260-276.html
   My bibliography  Save this item

Bayesian analysis of a Tobit quantile regression model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fengkai Yang, 2018. "A Stochastic EM Algorithm for Quantile and Censored Quantile Regression Models," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 555-582, August.
  2. Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2016. "Do maternal health problems influence child's worrying status? Evidence from the British Cohort Study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2941-2955, December.
  3. Wichitaksorn, Nuttanan & Tsurumi, Hiroki, 2013. "Comparison of MCMC algorithms for the estimation of Tobit model with non-normal error: The case of asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 226-235.
  4. Xiaofeng Lv & Rui Li, 2013. "Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 317-347, October.
  5. Rahim Alhamzawi & Haithem Taha Mohammad Ali, 2020. "Brq: an R package for Bayesian quantile regression," METRON, Springer;Sapienza Università di Roma, vol. 78(3), pages 313-328, December.
  6. Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
  7. Kim, Mo Se & Lee, Byung Sung & Lee, Hye Seon & Lee, Seung Ho & Lee, Junseok & Kim, Wonse, 2020. "Robust estimation of outage costs in South Korea using a machine learning technique: Bayesian Tobit quantile regression," Applied Energy, Elsevier, vol. 278(C).
  8. Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
  9. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
  10. R. Alhamzawi & K. Yu & D. F. Benoit, 2011. "Bayesian adaptive Lasso quantile regression," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/728, Ghent University, Faculty of Economics and Business Administration.
  11. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
  12. James W. Taylor & Keming Yu, 2016. "Using auto-regressive logit models to forecast the exceedance probability for financial risk management," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 1069-1092, October.
  13. Ying Yuan & Guosheng Yin, 2010. "Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data," Biometrics, The International Biometric Society, vol. 66(1), pages 105-114, March.
  14. Yunwen Yang & Huixia Judy Wang & Xuming He, 2016. "Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood," International Statistical Review, International Statistical Institute, vol. 84(3), pages 327-344, December.
  15. D. F. Benoit & D. Van Den Poel, 2010. "Binary quantile regression: A Bayesian approach based on the asymmetric Laplace density," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/662, Ghent University, Faculty of Economics and Business Administration.
  16. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
  17. repec:hum:wpaper:sfb649dp2014-021 is not listed on IDEAS
  18. Xiaoning Li & Mulati Tuerde & Xijian Hu, 2023. "Variational Bayesian Inference for Quantile Regression Models with Nonignorable Missing Data," Mathematics, MDPI, vol. 11(18), pages 1-31, September.
  19. Oh, Man-Suk & Park, Eun Sug & So, Beong-Soo, 2016. "Bayesian variable selection in binary quantile regression," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 177-181.
  20. Jing Wang, 2012. "Bayesian quantile regression for parametric nonlinear mixed effects models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(3), pages 279-295, August.
  21. Li, Dan & Clements, Adam & Drovandi, Christopher, 2023. "A Bayesian approach for more reliable tail risk forecasts," Journal of Financial Stability, Elsevier, vol. 64(C).
  22. Jennifer Betz & Maximilian Nagl & Daniel Rösch, 2022. "Credit line exposure at default modelling using Bayesian mixed effect quantile regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2035-2072, October.
  23. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
  24. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
  25. A. Aghamohammadi & S. Mohammadi, 2017. "Bayesian analysis of penalized quantile regression for longitudinal data," Statistical Papers, Springer, vol. 58(4), pages 1035-1053, December.
  26. Rahim Alhamzawi, 2016. "Bayesian Analysis of Composite Quantile Regression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 358-373, October.
  27. Jayabrata Biswas & Kiranmoy Das, 2021. "A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data," Computational Statistics, Springer, vol. 36(1), pages 241-260, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.