IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v88y2011i6p2261-2272.html
   My bibliography  Save this item

The development and application of a temporal MARKAL energy system model using flexible time slicing

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Raugei, Marco & Leccisi, Enrica & Fthenakis, Vasilis & Escobar Moragas, Rodrigo & Simsek, Yeliz, 2018. "Net energy analysis and life cycle energy assessment of electricity supply in Chile: Present status and future scenarios," Energy, Elsevier, vol. 162(C), pages 659-668.
  2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  3. Kannan, Ramachandran & Turton, Hal, 2012. "Cost of ad-hoc nuclear policy uncertainties in the evolution of the Swiss electricity system," Energy Policy, Elsevier, vol. 50(C), pages 391-406.
  4. Göke, Leonard & Kendziorski, Mario, 2022. "Adequacy of time-series reduction for renewable energy systems," Energy, Elsevier, vol. 238(PA).
  5. Scheller, Fabian & Bruckner, Thomas, 2019. "Energy system optimization at the municipal level: An analysis of modeling approaches and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 444-461.
  6. Kikuchi, Yasunori & Kimura, Seiichiro & Okamoto, Yoshitaka & Koyama, Michihisa, 2014. "A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options," Applied Energy, Elsevier, vol. 132(C), pages 586-601.
  7. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  8. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
  9. Samsatli, Sheila & Samsatli, Nouri J., 2018. "A multi-objective MILP model for the design and operation of future integrated multi-vector energy networks capturing detailed spatio-temporal dependencies," Applied Energy, Elsevier, vol. 220(C), pages 893-920.
  10. Danieli, Piero & Carraro, Gianluca & Volpato, Gabriele & Cin, Enrico Dal & Lazzaretto, Andrea & Masi, Massimo, 2024. "Guidelines for minimum cost transition planning to a 100% renewable multi-regional energy system," Applied Energy, Elsevier, vol. 357(C).
  11. Fehrenbach, Daniel & Merkel, Erik & McKenna, Russell & Karl, Ute & Fichtner, Wolf, 2014. "On the economic potential for electric load management in the German residential heating sector – An optimising energy system model approach," Energy, Elsevier, vol. 71(C), pages 263-276.
  12. Emmanuel Fragnière & Roman Kanala & Francesco Moresino & Adriana Reveiu & Ion Smeureanu, 2017. "Coupling techno-economic energy models with behavioral approaches," Operational Research, Springer, vol. 17(2), pages 633-647, July.
  13. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
  14. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
  15. García-Gusano, Diego & Espegren, Kari & Lind, Arne & Kirkengen, Martin, 2016. "The role of the discount rates in energy systems optimisation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 56-72.
  16. Quiggin, Daniel & Buswell, Richard, 2016. "The implications of heat electrification on national electrical supply-demand balance under published 2050 energy scenarios," Energy, Elsevier, vol. 98(C), pages 253-270.
  17. Ali, Ghaffar & Abbas, Sawaid & Mueen Qamer, Faisal, 2013. "How effectively low carbon society development models contribute to climate change mitigation and adaptation action plans in Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 632-638.
  18. Olympios, Andreas V. & Pantaleo, Antonio M. & Sapin, Paul & Markides, Christos N., 2020. "On the value of combined heat and power (CHP) systems and heat pumps incentralised and distributed heating systems: Lessons from multi-fidelitymodelling approaches," Applied Energy, Elsevier, vol. 274(C).
  19. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
  20. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
  21. Chung, Mo & Park, Hwa-Choon, 2012. "Building energy demand patterns for department stores in Korea," Applied Energy, Elsevier, vol. 90(1), pages 241-249.
  22. Timmerman, Jonas & Vandevelde, Lieven & Van Eetvelde, Greet, 2014. "Towards low carbon business park energy systems: Classification of techno-economic energy models," Energy, Elsevier, vol. 75(C), pages 68-80.
  23. Astudillo, Miguel F. & Vaillancourt, Kathleen & Pineau, Pierre-Olivier & Amor, Ben, 2017. "Can the household sector reduce global warming mitigation costs? sensitivity to key parameters in a TIMES techno-economic energy model," Applied Energy, Elsevier, vol. 205(C), pages 486-498.
  24. Qadrdan, Meysam & Chaudry, Modassar & Jenkins, Nick & Baruah, Pranab & Eyre, Nick, 2015. "Impact of transition to a low carbon power system on the GB gas network," Applied Energy, Elsevier, vol. 151(C), pages 1-12.
  25. Raugei, Marco & Leccisi, Enrica & Azzopardi, Brian & Jones, Christopher & Gilbert, Paul & Zhang, Lingxi & Zhou, Yutian & Mander, Sarah & Mancarella, Pierluigi, 2018. "A multi-disciplinary analysis of UK grid mix scenarios with large-scale PV deployment," Energy Policy, Elsevier, vol. 114(C), pages 51-62.
  26. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  27. Robertson, Bryson & Bekker, Jessica & Buckham, Bradley, 2020. "Renewable integration for remote communities: Comparative allowable cost analyses for hydro, solar and wave energy," Applied Energy, Elsevier, vol. 264(C).
  28. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
  29. Jain, A. & Yamujala, S. & Gaur, A. & Das, P. & Bhakar, R. & Mathur, J., 2023. "Power sector decarbonization planning considering renewable resource variability and system operational constraints," Applied Energy, Elsevier, vol. 331(C).
  30. Welsch, M. & Hermann, S. & Howells, M. & Rogner, H.H. & Young, C. & Ramma, I. & Bazilian, M. & Fischer, G. & Alfstad, T. & Gielen, D. & Le Blanc, D. & Röhrl, A. & Steduto, P. & Müller, A., 2014. "Adding value with CLEWS – Modelling the energy system and its interdependencies for Mauritius," Applied Energy, Elsevier, vol. 113(C), pages 1434-1445.
  31. Simoes, Sofia & Zeyringer, Marianne & Mayr, Dieter & Huld, Thomas & Nijs, Wouter & Schmidt, Johannes, 2017. "Impact of different levels of geographical disaggregation of wind and PV electricity generation in large energy system models: A case study for Austria," Renewable Energy, Elsevier, vol. 105(C), pages 183-198.
  32. Xiaoyang Sun & Baosheng Zhang & Xu Tang & Benjamin C. McLellan & Mikael Höök, 2016. "Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System," Energies, MDPI, vol. 9(12), pages 1-20, November.
  33. Heinrichs, Heidi & Jochem, Patrick & Fichtner, Wolf, 2014. "Including road transport in the EU ETS (European Emissions Trading System): A model-based analysis of the German electricity and transport sector," Energy, Elsevier, vol. 69(C), pages 708-720.
  34. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
  35. Nicolas Weidmann & Ramachandran Kannan & Hal Turton, 2012. "Swiss Climate Change and Nuclear Policy: A Comparative Analysis Using an Energy System Approach and a Sectoral Electricity Model," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 275-316, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.