IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v87y2010i9p2812-2817.html
   My bibliography  Save this item

The preparation and properties of multi-component molten salts

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. López-Sabirón, Ana M. & Royo, Patricia & Ferreira, Victor J. & Aranda-Usón, Alfonso & Ferreira, Germán, 2014. "Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption," Applied Energy, Elsevier, vol. 135(C), pages 616-624.
  2. Mohammad, Mehedi Bin & Brooks, Geoffrey Alan & Rhamdhani, M. Akbar, 2017. "Thermal analysis of molten ternary lithium-sodium-potassium nitrates," Renewable Energy, Elsevier, vol. 104(C), pages 76-87.
  3. Du, Lichan & Ding, Jing & Tian, Heqing & Wang, Weilong & Wei, Xiaolan & Song, Ming, 2017. "Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process," Applied Energy, Elsevier, vol. 204(C), pages 1225-1230.
  4. Garvey, Seamus D., 2012. "The dynamics of integrated compressed air renewable energy systems," Renewable Energy, Elsevier, vol. 39(1), pages 271-292.
  5. Jianfeng Lu & Zhan Zhang & Weilong Wang & Jing Ding, 2021. "Effects of MgO Nanoparticles on Thermo-Physical Properties of LiNO 3 -NaNO 3 -KNO 3 for Thermal Energy Storage," Energies, MDPI, vol. 14(3), pages 1-10, January.
  6. Rovira, Antonio & Montes, María José & Valdes, Manuel & Martínez-Val, José María, 2011. "Energy management in solar thermal power plants with double thermal storage system and subdivided solar field," Applied Energy, Elsevier, vol. 88(11), pages 4055-4066.
  7. Ding, Jing & Du, Lichan & Pan, Gechuanqi & Lu, Jianfeng & Wei, Xiaolan & Li, Jiang & Wang, Weilong & Yan, Jinyue, 2018. "Molecular dynamics simulations of the local structures and thermodynamic properties on molten alkali carbonate K2CO3," Applied Energy, Elsevier, vol. 220(C), pages 536-544.
  8. Yang, Chuntao & Wei, Xiaolan & Wang, Weilong & Lin, Zihao & Ding, Jing & Wang, Yan & Peng, Qiang & Yang, Jianping, 2016. "NOx emissions and the component changes of ternary molten nitrate salts in thermal energy storage process," Applied Energy, Elsevier, vol. 184(C), pages 346-352.
  9. Pawan Kumar Kuldeep & Sandeep Kumar & Mohammed Saquib Khan & Hitesh Panchal & Ashmore Mawire & Sunita Mahavar, 2022. "Investigation of Heat Transfer Fluids Using a Solar Concentrator for Medium Temperature Storage Receiver Systems and Applications," Energies, MDPI, vol. 15(21), pages 1-16, October.
  10. Huang, Zhaowen & Luo, Zigeng & Gao, Xuenong & Fang, Xiaoming & Fang, Yutang & Zhang, Zhengguo, 2017. "Investigations on the thermal stability, long-term reliability of LiNO3/KCl – expanded graphite composite as industrial waste heat storage material and its corrosion properties with metals," Applied Energy, Elsevier, vol. 188(C), pages 521-528.
  11. Tang, Song-Zhen & He, Yan & He, Ya-Ling & Wang, Fei-Long, 2020. "Enhancing the thermal response of a latent heat storage system for suppressing temperature fluctuation of dusty flue gas," Applied Energy, Elsevier, vol. 266(C).
  12. Chacartegui, R. & Alovisio, A. & Ortiz, C. & Valverde, J.M. & Verda, V. & Becerra, J.A., 2016. "Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle," Applied Energy, Elsevier, vol. 173(C), pages 589-605.
  13. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
  14. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
  15. Yılmaz, İbrahim Halil & Mwesigye, Aggrey & Kılıç, Fatih, 2023. "Prioritization of heat transfer fluids in parabolic trough solar systems using CFD-assisted AHP-VIKOR approach," Renewable Energy, Elsevier, vol. 210(C), pages 751-768.
  16. Bie, Yu & Li, Ming & Chen, Fei & Królczyk, Grzegorz & Yang, Lin & Li, Zhixiong & Li, Weihua, 2019. "A novel empirical heat transfer model for a solar thermal storage process using phase change materials," Energy, Elsevier, vol. 168(C), pages 222-234.
  17. Villada, Carolina & Bonk, Alexander & Bauer, Thomas & Bolívar, Francisco, 2018. "High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres," Applied Energy, Elsevier, vol. 226(C), pages 107-115.
  18. El-Sayed, Wael G. & Attia, Nour F. & Ismail, Ibrahim & El-Khayat, Mohamed & Nogami, Masanobu & Abdel-Mottaleb, M.S.A., 2021. "Innovative and cost-effective nanodiamond based molten salt nanocomposite as efficient heat transfer fluid and thermal energy storage media," Renewable Energy, Elsevier, vol. 177(C), pages 596-602.
  19. Starke, Allan R. & Cardemil, José M. & Bonini, Vinicius R.B. & Escobar, Rodrigo & Castro-Quijada, Matías & Videla, Álvaro, 2024. "Assessing the performance of novel molten salt mixtures on CSP applications," Applied Energy, Elsevier, vol. 359(C).
  20. Wei, Xiaolan & Qin, Bo & Yang, Chuntao & Wang, Weilong & Ding, Jing & Wang, Yan & Peng, Qiang, 2019. "Nox emission of ternary nitrate molten salts in high-temperature heat storage and transfer process," Applied Energy, Elsevier, vol. 236(C), pages 147-154.
  21. Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
  22. Jingyu Zhong & Jing Ding & Jianfeng Lu & Xiaolan Wei & Weilong Wang, 2022. "Thermal Stability Calculation and Experimental Investigation of Common Binary Chloride Molten Salts Applied in Concentrating Solar Power Plants," Energies, MDPI, vol. 15(7), pages 1-31, March.
  23. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
  24. Tian, Heqing & Wang, Weilong & Ding, Jing & Wei, Xiaolan & Song, Ming & Yang, Jianping, 2015. "Thermal conductivities and characteristics of ternary eutectic chloride/expanded graphite thermal energy storage composites," Applied Energy, Elsevier, vol. 148(C), pages 87-92.
  25. Wang, Tao & Mantha, Divakar & Reddy, Ramana G., 2013. "Novel low melting point quaternary eutectic system for solar thermal energy storage," Applied Energy, Elsevier, vol. 102(C), pages 1422-1429.
  26. Gokon, Nobuyuki & Yamaguchi, Tomoya & Kodama, Tatsuya, 2016. "Cyclic thermal storage/discharge performances of a hypereutectic Cu-Si alloy under vacuum for solar thermochemical process," Energy, Elsevier, vol. 113(C), pages 1099-1108.
  27. Qin, Frank G.F. & Yang, Xiaoping & Ding, Zhan & Zuo, Yuanzhi & Shao, Youyan & Jiang, Runhua & Yang, Xiaoxi, 2012. "Thermocline stability criterions in single-tanks of molten salt thermal energy storage," Applied Energy, Elsevier, vol. 97(C), pages 816-821.
  28. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  29. Wei, Xiaolan & Song, Ming & Wang, Weilong & Ding, Jing & Yang, Jianping, 2015. "Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage," Applied Energy, Elsevier, vol. 156(C), pages 306-310.
  30. Lisbona, Pilar & Bailera, Manuel & Hills, Thomas & Sceats, Mark & Díez, Luis I. & Romeo, Luis M., 2020. "Energy consumption minimization for a solar lime calciner operating in a concentrated solar power plant for thermal energy storage," Renewable Energy, Elsevier, vol. 156(C), pages 1019-1027.
  31. Calvet, Nicolas & Gomez, Judith C. & Faik, Abdessamad & Roddatis, Vladimir V. & Meffre, Antoine & Glatzmaier, Greg C. & Doppiu, Stefania & Py, Xavier, 2013. "Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system," Applied Energy, Elsevier, vol. 109(C), pages 387-393.
  32. Vignarooban, K. & Xu, Xinhai & Arvay, A. & Hsu, K. & Kannan, A.M., 2015. "Heat transfer fluids for concentrating solar power systems – A review," Applied Energy, Elsevier, vol. 146(C), pages 383-396.
  33. Wang, Haoran & Ran, Xiaofeng & Zhong, Yajuan & Lu, Linyuan & Lin, Jun & He, Gang & Wang, Liang & Dai, Zhimin, 2022. "Ternary chloride salt–porous ceramic composite as a high-temperature phase change material," Energy, Elsevier, vol. 238(PB).
  34. Ong, Teng-Cheong & Sarvghad, Madjid & Lippiatt, Kaleb & Griggs, Lewis & Ryan, Hollie & Will, Geoffrey & Steinberg, Theodore A., 2020. "Review of the solubility, monitoring, and purification of impurities in molten salts for energy storage in concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  35. Tian, Heqing & Du, Lichan & Wei, Xiaolan & Deng, Suyan & Wang, Weilong & Ding, Jing, 2017. "Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage," Applied Energy, Elsevier, vol. 204(C), pages 525-530.
  36. Blanco-Rodríguez, P. & Rodríguez-Aseguinolaza, J. & Risueño, E. & Tello, M., 2014. "Thermophysical characterization of Mg–51%Zn eutectic metal alloy: A phase change material for thermal energy storage in direct steam generation applications," Energy, Elsevier, vol. 72(C), pages 414-420.
  37. Diago, Miguel & Iniesta, Alberto Crespo & Soum-Glaude, Audrey & Calvet, Nicolas, 2018. "Characterization of desert sand to be used as a high-temperature thermal energy storage medium in particle solar receiver technology," Applied Energy, Elsevier, vol. 216(C), pages 402-413.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.