IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v87y2010i10p2953-2973.html
   My bibliography  Save this item

Experimental investigation of three different solar air heaters: Energy and exergy analyses

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
  2. Hassan, Hamdy & Abo-Elfadl, Saleh, 2018. "Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate," Renewable Energy, Elsevier, vol. 116(PA), pages 728-740.
  3. Abdelkader, Tarek Kh. & Sayed, Hassan A.A. & Refai, Mohamed & Ali, Mahmoud M. & Zhang, Yanlin & Wan, Q. & Khalifa, Ibrahim & Fan, Qizhou & Wang, Yunfeng & Abdelhamid, Mahmoud A., 2024. "Machine learning, mathematical modeling and 4E (energy, exergy, environmental, and economic) analysis of an indirect solar dryer for drying sweet potato," Renewable Energy, Elsevier, vol. 227(C).
  4. Kabeel, A.E. & Hamed, Mofreh H. & Omara, Z.M. & Kandeal, A.W., 2017. "Solar air heaters: Design configurations, improvement methods and applications – A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1189-1206.
  5. Ali Hassan & Ali M. Nikbakht & Sabrina Fawzia & Prasad Yarlagadda & Azharul Karim, 2024. "A Comprehensive Review of the Thermohydraulic Improvement Potentials in Solar Air Heaters through an Energy and Exergy Analysis," Energies, MDPI, vol. 17(7), pages 1-43, March.
  6. Kalaiarasi, G. & Velraj, R. & Swami, Muthusamy V., 2016. "Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage," Energy, Elsevier, vol. 111(C), pages 609-619.
  7. Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Kumar, Nitin & Kumar, Raj & Kumar, Anil, 2018. "Heat transfer augmentation in solar thermal collectors using impinging air jets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3179-3190.
  8. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Flow and thermal behavior of solar air heater with grooved roughness," Renewable Energy, Elsevier, vol. 220(C).
  9. Tiwari, Sumit & Tiwari, G.N., 2017. "Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector," Energy, Elsevier, vol. 128(C), pages 183-195.
  10. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
  11. Shams, S.M.N. & Mc Keever, M. & Mc Cormack, S. & Norton, B., 2016. "Design and experiment of a new solar air heating collector," Energy, Elsevier, vol. 100(C), pages 374-383.
  12. Tarek Kh. Abdelkader & Qizhou Fan & Eid S. Gaballah & Shaowei Wang & Yanlin Zhang, 2020. "Energy and Exergy Analysis of a Flat-Plate Solar Air Heater Artificially Roughened and Coated with a Novel Solar Selective Coating," Energies, MDPI, vol. 13(4), pages 1-17, February.
  13. Thapa, Sashank & Kumar, Raj & Lee, Daeho, 2024. "Energetic and exergetic analysis of jet impingement solar thermal collector featuring discrete multi-arc shaped ribs absorber surface," Energy, Elsevier, vol. 306(C).
  14. Razak, A.A. & Majid, Z.A.A. & Azmi, W.H. & Ruslan, M.H. & Choobchian, Sh. & Najafi, G. & Sopian, K., 2016. "Review on matrix thermal absorber designs for solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 682-693.
  15. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Investigations on thermo-hydraulic performance due to flow-attack-angle in V-down rib with gap in a rectangular duct of solar air heater," Applied Energy, Elsevier, vol. 97(C), pages 907-912.
  16. Tyagi, V.V. & Panwar, N.L. & Rahim, N.A. & Kothari, Richa, 2012. "Review on solar air heating system with and without thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2289-2303.
  17. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater," Renewable Energy, Elsevier, vol. 136(C), pages 48-68.
  18. Rajarajeswari, K. & Sreekumar, A., 2016. "Matrix solar air heaters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 704-712.
  19. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
  20. Debnath, Suman & Das, Biplab & Randive, P.R. & Pandey, K.M., 2018. "Performance analysis of solar air collector in the climatic condition of North Eastern India," Energy, Elsevier, vol. 165(PB), pages 281-298.
  21. Kishk, Sameh S. & ElGamal, Ramadan A. & ElMasry, Gamal M., 2019. "Effectiveness of recyclable aluminum cans in fabricating an efficient solar collector for drying agricultural products," Renewable Energy, Elsevier, vol. 133(C), pages 307-316.
  22. Priyam, Abhishek & Chand, Prabha, 2018. "Effect of wavelength and amplitude on the performance of wavy finned absorber solar air heater," Renewable Energy, Elsevier, vol. 119(C), pages 690-702.
  23. Ural, Tolga, 2019. "Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses," Energy, Elsevier, vol. 188(C).
  24. Roozbeh Vaziri & Akeem Adeyemi Oladipo & Mohsen Sharifpur & Rani Taher & Mohammad Hossein Ahmadi & Alibek Issakhov, 2021. "Efficiency Enhancement in Double-Pass Perforated Glazed Solar Air Heaters with Porous Beds: Taguchi-Artificial Neural Network Optimization and Cost–Benefit Analysis," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
  25. Salih, Salah M. & Jalil, Jalal M. & Najim, Saleh E., 2019. "Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM," Renewable Energy, Elsevier, vol. 143(C), pages 1053-1066.
  26. Sabzpooshani, M. & Mohammadi, K. & Khorasanizadeh, H., 2014. "Exergetic performance evaluation of a single pass baffled solar air heater," Energy, Elsevier, vol. 64(C), pages 697-706.
  27. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
  28. Bahrehmand, D. & Ameri, M. & Gholampour, M., 2015. "Energy and exergy analysis of different solar air collector systems with forced convection," Renewable Energy, Elsevier, vol. 83(C), pages 1119-1130.
  29. Hedayatizadeh, Mahdi & Sarhaddi, Faramarz & Safavinejad, Ali & Ranjbar, Faramarz & Chaji, Hossein, 2016. "Exergy loss-based efficiency optimization of a double-pass/glazed v-corrugated plate solar air heater," Energy, Elsevier, vol. 94(C), pages 799-810.
  30. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  31. Jafarkazemi, Farzad & Ahmadifard, Emad, 2013. "Energetic and exergetic evaluation of flat plate solar collectors," Renewable Energy, Elsevier, vol. 56(C), pages 55-63.
  32. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
  33. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
  34. El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & Shalaby, S.M. & Moharram, B.M., 2011. "Thermal performance investigation of double pass-finned plate solar air heater," Applied Energy, Elsevier, vol. 88(5), pages 1727-1739, May.
  35. ElGamal, Ramadan & Kishk, Sameh & Al-Rejaie, Salim & ElMasry, Gamal, 2021. "Incorporation of a solar tracking system for enhancing the performance of solar air heaters in drying apple slices," Renewable Energy, Elsevier, vol. 167(C), pages 676-684.
  36. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.