IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v86y2009i6p826-836.html
   My bibliography  Save this item

Evaluating cubic equations of state for calculation of vapor-liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nazeri, Mahmoud & Maroto-Valer, M. Mercedes & Jukes, Edward, 2018. "Density of carbon dioxide with impurities by Coriolis flow meter, oscillation-type densitometer and equations of state," Applied Energy, Elsevier, vol. 212(C), pages 162-174.
  2. Guansheng Qi & Hao Hu & Wei Lu & Lulu Sun & Xiangming Hu & Yuntao Liang & Wei Wang, 2022. "Influence of Mine Environmental Factors on the Liquid CO 2 Pipeline Transport System with Great Altitude Difference," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
  3. Li, Hailong & Jakobsen, Jana P. & Wilhelmsen, Øivind & Yan, Jinyue, 2011. "PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models," Applied Energy, Elsevier, vol. 88(11), pages 3567-3579.
  4. Song, Chun Feng & Kitamura, Yutaka & Li, Shu Hong, 2012. "Evaluation of Stirling cooler system for cryogenic CO2 capture," Applied Energy, Elsevier, vol. 98(C), pages 491-501.
  5. Ziabakhsh-Ganji, Zaman & Kooi, Henk, 2014. "Sensitivity of Joule–Thomson cooling to impure CO2 injection in depleted gas reservoirs," Applied Energy, Elsevier, vol. 113(C), pages 434-451.
  6. Munkejord, Svend Tollak & Hammer, Morten & Løvseth, Sigurd W., 2016. "CO2 transport: Data and models – A review," Applied Energy, Elsevier, vol. 169(C), pages 499-523.
  7. Li, Didi & He, Yao & Zhang, Hongcheng & Xu, Wenbin & Jiang, Xi, 2017. "A numerical study of the impurity effects on CO2 geological storage in layered formation," Applied Energy, Elsevier, vol. 199(C), pages 107-120.
  8. Elshahomi, Alhoush & Lu, Cheng & Michal, Guillaume & Liu, Xiong & Godbole, Ajit & Venton, Philip, 2015. "Decompression wave speed in CO2 mixtures: CFD modelling with the GERG-2008 equation of state," Applied Energy, Elsevier, vol. 140(C), pages 20-32.
  9. Chen, Wei-Hsin & Tsai, Ming-Hang & Hung, Chen-I, 2013. "Numerical prediction of CO2 capture process by a single droplet in alkaline spray," Applied Energy, Elsevier, vol. 109(C), pages 125-134.
  10. Esfandiyar Naeiji & Alireza Noorpoor & Hossein Ghanavati, 2022. "Energy, Exergy, and Economic Analysis of Cryogenic Distillation and Chemical Scrubbing for Biogas Upgrading and Hydrogen Production," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
  11. Goran Durakovic & Geir Skaugen, 2019. "Analysis of Thermodynamic Models for Simulation and Optimisation of Organic Rankine Cycles," Energies, MDPI, vol. 12(17), pages 1-12, August.
  12. Wenchao Yang & Shuhong Li & Xianliang Li & Yuanyuan Liang & Xiaosong Zhang, 2015. "Analysis of a New Liquefaction Combined with Desublimation System for CO 2 Separation Based on N 2 /CO 2 Phase Equilibrium," Energies, MDPI, vol. 8(9), pages 1-14, September.
  13. Sanchez-Vicente, Yolanda & Tay, Weparn J. & Al Ghafri, Saif Z. & Trusler, J.P. Martin, 2018. "Thermodynamics of carbon dioxide-hydrocarbon systems," Applied Energy, Elsevier, vol. 220(C), pages 629-642.
  14. Luis Míguez, José & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Rodríguez, Sandra, 2018. "Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity," Applied Energy, Elsevier, vol. 211(C), pages 1282-1296.
  15. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
  16. Gupta, Sapna & Adams, Joseph J. & Wilson, Jamie R. & Eddings, Eric G. & Mahapatra, Manoj K. & Singh, Prabhakar, 2016. "Performance and post-test characterization of an OTM system in an experimental coal gasifier," Applied Energy, Elsevier, vol. 165(C), pages 72-80.
  17. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
  18. Wang, Jinkai & Feng, Xiaoyong & Wanyan, Qiqi & Zhao, Kai & Wang, Ziji & Pei, Gen & Xie, Jun & Tian, Bo, 2022. "Hysteresis effect of three-phase fluids in the high-intensity injection–production process of sandstone underground gas storages," Energy, Elsevier, vol. 242(C).
  19. Hedin, Niklas & Andersson, Linnéa & Bergström, Lennart & Yan, Jinyue, 2013. "Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption," Applied Energy, Elsevier, vol. 104(C), pages 418-433.
  20. Liu, Xiong & Godbole, Ajit & Lu, Cheng & Michal, Guillaume & Venton, Philip, 2014. "Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state," Applied Energy, Elsevier, vol. 126(C), pages 56-68.
  21. Luo, Xiaobo & Wang, Meihong & Oko, Eni & Okezue, Chima, 2014. "Simulation-based techno-economic evaluation for optimal design of CO2 transport pipeline network," Applied Energy, Elsevier, vol. 132(C), pages 610-620.
  22. Jiang, Xi, 2011. "A review of physical modelling and numerical simulation of long-term geological storage of CO2," Applied Energy, Elsevier, vol. 88(11), pages 3557-3566.
  23. Cui, Guodong & Zhang, Liang & Ren, Bo & Enechukwu, Chioma & Liu, Yanmin & Ren, Shaoran, 2016. "Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2: Heat mining rate and salt precipitation effects," Applied Energy, Elsevier, vol. 183(C), pages 837-852.
  24. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 4: Sensitivity analysis of transport pressures and benchmarking with conv," Applied Energy, Elsevier, vol. 86(6), pages 815-825, June.
  25. Zhao, Guoying & Aziz, Baroz & Hedin, Niklas, 2010. "Carbon dioxide adsorption on mesoporous silica surfaces containing amine-like motifs," Applied Energy, Elsevier, vol. 87(9), pages 2907-2913, September.
  26. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
  27. Jun Li & Raheel Ahmed & Xiaochun Li, 2018. "Thermodynamic Modeling of CO 2 -N 2 -O 2 -Brine-Carbonates in Conditions from Surface to High Temperature and Pressure," Energies, MDPI, vol. 11(10), pages 1-18, October.
  28. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
  29. Li, Didi & Zhang, Hongcheng & Li, Yang & Xu, Wenbin & Jiang, Xi, 2018. "Effects of N2 and H2S binary impurities on CO2 geological storage in stratified formation – A sensitivity study," Applied Energy, Elsevier, vol. 229(C), pages 482-492.
  30. Li, Didi & Jiang, Xi, 2014. "A numerical study of the impurity effects of nitrogen and sulfur dioxide on the solubility trapping of carbon dioxide geological storage," Applied Energy, Elsevier, vol. 128(C), pages 60-74.
  31. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari & Mousavi, Seyed Ali, 2019. "Evaluation of an optimal integrated design multi-fuel multi-product electrical power plant by energy and exergy analyses," Energy, Elsevier, vol. 169(C), pages 61-78.
  32. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2012. "Influence of droplet mutual interaction on carbon dioxide capture process in sprays," Applied Energy, Elsevier, vol. 92(C), pages 185-193.
  33. Li, H. & Yan, J., 2009. "Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes," Applied Energy, Elsevier, vol. 86(12), pages 2760-2770, December.
  34. Chen, Shiyi & Xiang, Wenguo & Wang, Dong & Xue, Zhipeng, 2012. "Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture," Applied Energy, Elsevier, vol. 95(C), pages 285-294.
  35. Ziabakhsh-Ganji, Zaman & Kooi, Henk, 2014. "Sensitivity of the CO2 storage capacity of underground geological structures to the presence of SO2 and other impurities," Applied Energy, Elsevier, vol. 135(C), pages 43-52.
  36. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
  37. Dall’Acqua, D. & Terenzi, A. & Leporini, M. & D’Alessandro, V. & Giacchetta, G. & Marchetti, B., 2017. "A new tool for modelling the decompression behaviour of CO2 with impurities using the Peng-Robinson equation of state," Applied Energy, Elsevier, vol. 206(C), pages 1432-1445.
  38. Park, Sung Ku & Kim, Tong Seop & Sohn, Jeong L. & Lee, Young Duk, 2011. "An integrated power generation system combining solid oxide fuel cell and oxy-fuel combustion for high performance and CO2 capture," Applied Energy, Elsevier, vol. 88(4), pages 1187-1196, April.
  39. Duan, Hong-Bo & Fan, Ying & Zhu, Lei, 2013. "What’s the most cost-effective policy of CO2 targeted reduction: An application of aggregated economic technological model with CCS?," Applied Energy, Elsevier, vol. 112(C), pages 866-875.
  40. Luo, Feng & Xu, Rui-Na & Jiang, Pei-Xue, 2013. "Numerical investigation of the influence of vertical permeability heterogeneity in stratified formation and of injection/production well perforation placement on CO2 geological storage with enhanced C," Applied Energy, Elsevier, vol. 102(C), pages 1314-1323.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.