IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v239y2019icp957-968.html
   My bibliography  Save this item

Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Yaowang & Miao, Shihong & Luo, Xing & Yin, Binxin & Han, Ji & Wang, Jihong, 2020. "Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid," Applied Energy, Elsevier, vol. 261(C).
  2. Qiu, Rui & Liao, Qi & Klemeš, Jiří Jaromír & Liang, Yongtu & Guo, Zhichao & Chen, Jinyu & Zhang, Haoran, 2022. "Roadmap to urban energy internet with wind electricity-natural gas nexus: Economic and environmental analysis," Energy, Elsevier, vol. 245(C).
  3. Guo, Huan & Xu, Yujie & Kang, Haoyuan & Guo, Wenbing & Liu, Yu & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2023. "From theory to practice: Evaluating the thermodynamic design landscape of compressed air energy storage systems," Applied Energy, Elsevier, vol. 352(C).
  4. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
  5. Zhan, Junpeng & Ansari, Osama Aslam & Liu, Weijia & Chung, C.Y., 2019. "An accurate bilinear cavern model for compressed air energy storage," Applied Energy, Elsevier, vol. 242(C), pages 752-768.
  6. Mohammed Issa Shahateet & Ghani Albaali & Abdul Ghafoor Saidi, 2021. "Energy and Environmental Analysis of Solar Air Cooling with 2-Stages Adsorption Chiller in Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 16-26.
  7. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
  8. Du, Ruxue & He, Yang & Chen, Haisheng & Xu, Yujie & Li, Wen & Deng, Jianqiang, 2022. "Performance and economy of trigenerative adiabatic compressed air energy storage system based on multi-parameter analysis," Energy, Elsevier, vol. 238(PA).
  9. Alirahmi, Seyed Mojtaba & Razmi, Amir Reza & Arabkoohsar, Ahmad, 2021. "Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
  10. Zhao, Pan & Wang, Peizi & Xu, Wenpan & Zhang, Shiqiang & Wang, Jiangfeng & Dai, Yiping, 2021. "The survey of the combined heat and compressed air energy storage (CH-CAES) system with dual power levels turbomachinery configuration for wind power peak shaving based spectral analysis," Energy, Elsevier, vol. 215(PB).
  11. Liu, Zhan & Ding, Jialu & Huang, Xinyu & Liu, Zhengguang & Yan, Xuewen & Liu, Xianglei & Yang, Xiaohu, 2024. "Analysis of a hybrid heat and underwater compressed air energy storage system used at coastal areas," Applied Energy, Elsevier, vol. 354(PA).
  12. Ouyang, Tiancheng & Qin, Peijia & Xie, Shutao & Tan, Xianlin & Pan, Mingming, 2023. "Flexible dispatch strategy of purchasing-selling electricity for coal-fired power plant based on compressed air energy storage," Energy, Elsevier, vol. 267(C).
  13. Huang, Rui & Zhou, Kang & Liu, Zhan, 2022. "Reduction on the inefficiency of heat recovery storage in a compressed carbon dioxide energy storage system," Energy, Elsevier, vol. 244(PB).
  14. Youssef Benchaabane & Rosa Elvira Silva & Hussein Ibrahim & Adrian Ilinca & Ambrish Chandra & Daniel R. Rousse, 2019. "Computer Model for Financial, Environmental and Risk Analysis of a Wind–Diesel Hybrid System with Compressed Air Energy Storage," Energies, MDPI, vol. 12(21), pages 1-23, October.
  15. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
  16. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
  17. Ochmann, J. & Rusin, K. & Bartela, Ł., 2023. "Comprehensive analytical model of energy and exergy performance of the thermal energy storage," Energy, Elsevier, vol. 283(C).
  18. Zhu, Junpeng & Meng, Dexin & Dong, Xiaofeng & Fu, Zhixin & Yuan, Yue, 2023. "An integrated electricity - hydrogen market design for renewable-rich energy system considering mobile hydrogen storage," Renewable Energy, Elsevier, vol. 202(C), pages 961-972.
  19. Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).
  20. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
  21. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2022. "Energy storage to solve the diurnal, weekly, and seasonal mismatch and achieve zero-carbon electricity consumption in buildings," Applied Energy, Elsevier, vol. 312(C).
  22. Huang, Jingjian & Xu, Yujie & Guo, Huan & Geng, Xiaoqian & Chen, Haisheng, 2022. "Dynamic performance and control scheme of variable-speed compressed air energy storage," Applied Energy, Elsevier, vol. 325(C).
  23. Zhang, Weifeng & Ding, Jialu & Yin, Suzhen & Zhang, Fangyuan & Zhang, Yao & Liu, Zhan, 2024. "Thermo-economic optimization of an artificial cavern compressed air energy storage with CO2 pressure stabilizing unit," Energy, Elsevier, vol. 294(C).
  24. Yuan, Jiahang & Luo, Xinggang & Li, Zhendong & Li, Lingfei & Ji, Pengli & Zhou, Qing & Zhang, Zhongliang, 2021. "Sustainable development evaluation on wind power compressed air energy storage projects based on multi-source heterogeneous data," Renewable Energy, Elsevier, vol. 169(C), pages 1175-1189.
  25. Li, Guangkuo & Chen, Laijun & Xue, Xiaodai & Guo, Zhongjie & Wang, Guohua & Xie, Ningning & Mei, Shengwei, 2022. "Multi-mode optimal operation of advanced adiabatic compressed air energy storage: Explore its value with condenser operation," Energy, Elsevier, vol. 248(C).
  26. Rao Kuang & Nangui Fan & Weifeng Zhang & Song Gan & Xiaomin Zhou & Heyi Huang & Yijun Shen, 2022. "Feasibility Analysis of Creating Light Environment for Growing Containers with Marine Renewable Energy," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
  27. Jakub Ochmann & Michał Jurczyk & Krzysztof Rusin & Sebastian Rulik & Łukasz Bartela & Wojciech Uchman, 2024. "Solution for Post-Mining Sites: Thermo-Economic Analysis of a Large-Scale Integrated Energy Storage System," Energies, MDPI, vol. 17(8), pages 1-21, April.
  28. Xiaosheng Peng & Kai Cheng & Jianxun Lang & Zuowei Zhang & Tao Cai & Shanxu Duan, 2021. "Short-Term Wind Power Prediction for Wind Farm Clusters Based on SFFS Feature Selection and BLSTM Deep Learning," Energies, MDPI, vol. 14(7), pages 1-18, March.
  29. Zhihua Lin & Zhitao Zuo & Wenbin Guo & Jianting Sun & Qi Liang & Haisheng Chen, 2021. "Experimental Study on Effects of Adjustable Vaned Diffusers on Impeller Backside Cavity of Centrifugal Compressor in CAES," Energies, MDPI, vol. 14(19), pages 1-20, September.
  30. Han, Ji & Miao, Shihong & Chen, Zhe & Liu, Zhou & Li, Yaowang & Yang, Weichen & Liu, Ziwen, 2021. "Multi-View clustering and discrete consensus based tri-level coordinated control of wind farm and adiabatic compressed air energy storage for providing frequency regulation service," Applied Energy, Elsevier, vol. 304(C).
  31. Bennett, Jeffrey A. & Fitts, Jeffrey P. & Clarens, Andres F., 2022. "Compressed air energy storage capacity of offshore saline aquifers using isothermal cycling," Applied Energy, Elsevier, vol. 325(C).
  32. He, Wei & Dooner, Mark & King, Marcus & Li, Dacheng & Guo, Songshan & Wang, Jihong, 2021. "Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation," Applied Energy, Elsevier, vol. 282(PA).
  33. Liu, Zhan & Liu, Zihui & Xin, Xuan & Yang, Xiaohu, 2020. "Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis," Applied Energy, Elsevier, vol. 269(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.