IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics0306261924013217.html
   My bibliography  Save this article

Whole process dynamic performance analysis of a solar-aided liquid air energy storage system: From single cycle to multi-cycle

Author

Listed:
  • Zhou, Yufei
  • Zhang, Hanfei
  • Ji, Shuaiyu
  • Sun, Mingjia
  • Ding, Xingqi
  • Zheng, Nan
  • Duan, Liqiang
  • Desideri, Umberto

Abstract

Liquid air energy storage (LAES) is a large-scale energy storage technology with great prospects. Currently, dynamic performance research on the LAES mainly focuses on systems that use packed beds for cold energy storage and release, but less on systems that use liquid working mediums such as methanol and propane for cold energy storage and release, which have better heat transfer performance. Meanwhile, existing studies have failed to take into account the mutual influence between the charging and discharging processes, as well as the multi-cycle performance. In response to these issues, this article develops a dynamic model of an LAES system that uses liquid methanol and propane for cold energy storage and release and introduces solar energy to improve round-trip efficiency. Subsequently, in-depth dynamic research is conducted on the proposed solar-aided liquid air energy storage (SALAES) system. The novelty of this work lies in the detailed structural design and dynamic modeling of multi-stream heat exchangers, the whole process dynamic simulation and performance evaluation of the SALAES system, and multi-cycle performance analysis based on the quantified cold energy loss. The research results indicate that under design conditions, the liquid air is generated at 30.3 s after the start of the charging process, and it takes about 640 s to make the air liquefaction rate reach 95% of the final stable value. The exhaustion of stored hot molten salt can make salt-air heat exchangers trip, leading to a 23.1% decrease in round-trip efficiency and a 12.2% decrease in exergy efficiency. In consideration of cold energy loss, using the rated discharging duration mode, the system will fully recover to the design performance after several cycles. Under the rated discharging flow rate mode, although the temperature of the cold storage fluids recovers faster, for every 5% increase in cold storage fluid temperature rise, the operation duration decreases by about 0.6 h.

Suggested Citation

  • Zhou, Yufei & Zhang, Hanfei & Ji, Shuaiyu & Sun, Mingjia & Ding, Xingqi & Zheng, Nan & Duan, Liqiang & Desideri, Umberto, 2024. "Whole process dynamic performance analysis of a solar-aided liquid air energy storage system: From single cycle to multi-cycle," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924013217
    DOI: 10.1016/j.apenergy.2024.123938
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924013217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123938?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. She, Xiaohui & Peng, Xiaodong & Nie, Binjian & Leng, Guanghui & Zhang, Xiaosong & Weng, Likui & Tong, Lige & Zheng, Lifang & Wang, Li & Ding, Yulong, 2017. "Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression," Applied Energy, Elsevier, vol. 206(C), pages 1632-1642.
    2. Esmaeilion, Farbod & Soltani, M. & Nathwani, Jatin & Al-Haq, Armughan & Dusseault, M.B. & Rosen, Marc A., 2024. "Exergoeconomic assessment of a high-efficiency compressed air energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Tafone, Alessio & Ding, Yulong & Li, Yongliang & Xie, Chunping & Romagnoli, Alessandro, 2020. "Levelised Cost of Storage (LCOS) analysis of liquid air energy storage system integrated with Organic Rankine Cycle," Energy, Elsevier, vol. 198(C).
    4. Saikia, Papumoni & Das, Nipankumar & Buragohain, Mrinal, 2024. "Robust energy storage system for stable in wind and solar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Tafone, Alessio & Borri, Emiliano & Comodi, Gabriele & van den Broek, Martijn & Romagnoli, Alessandro, 2018. "Liquid Air Energy Storage performance enhancement by means of Organic Rankine Cycle and Absorption Chiller," Applied Energy, Elsevier, vol. 228(C), pages 1810-1821.
    6. Sciacovelli, A. & Vecchi, A. & Ding, Y., 2017. "Liquid air energy storage (LAES) with packed bed cold thermal storage – From component to system level performance through dynamic modelling," Applied Energy, Elsevier, vol. 190(C), pages 84-98.
    7. Ding, Xingqi & Duan, Liqiang & Li, Da & Ji, Shuaiyu & Yang, Libo & Zheng, Nan & Zhou, Yufei, 2024. "Dynamic characteristics of a novel liquid air energy storage system coupled with solar heat and waste heat recovery," Renewable Energy, Elsevier, vol. 221(C).
    8. Huang, Jingjian & Xu, Yujie & Guo, Huan & Geng, Xiaoqian & Chen, Haisheng, 2022. "Dynamic performance and control scheme of variable-speed compressed air energy storage," Applied Energy, Elsevier, vol. 325(C).
    9. Tafone, Alessio & Romagnoli, Alessandro, 2023. "A novel liquid air energy storage system integrated with a cascaded latent heat cold thermal energy storage," Energy, Elsevier, vol. 281(C).
    10. Xue, Xiao-Dai & Zhang, Tong & Zhang, Xue-Lin & Ma, Lin-Rui & He, Ya-Ling & Li, Ming-Jia & Mei, Sheng-Wei, 2021. "Performance evaluation and exergy analysis of a novel combined cooling, heating and power (CCHP) system based on liquid air energy storage," Energy, Elsevier, vol. 222(C).
    11. Guo, Huan & Xu, Yujie & Zhang, Xuehui & Liang, Qi & Wang, Shurui & Chen, Haisheng, 2021. "Dynamic characteristics and control of supercritical compressed air energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    12. Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
    13. Lee, Inkyu & You, Fengqi, 2019. "Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy," Applied Energy, Elsevier, vol. 242(C), pages 168-180.
    14. Cui, Shuangshuang & He, Qing & Shi, Xingping & Liu, Yixue & Du, Dongmei, 2021. "Dynamic characteristics analysis for energy release process of liquid air energy storage system," Renewable Energy, Elsevier, vol. 180(C), pages 744-755.
    15. Park, Jinwoo & Qi, Meng & Kim, Jeongdong & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2020. "Exergoeconomic optimization of liquid air production by use of liquefied natural gas cold energy," Energy, Elsevier, vol. 207(C).
    16. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    17. Cui, Shuangshuang & Lu, Chang & Shi, Xingping & Du, Dongmei & He, Qing & Liu, Wenyi, 2021. "Numerical investigation of dynamic characteristics for expansion power generation system of liquefied air energy storage," Energy, Elsevier, vol. 226(C).
    18. Li, Ruixiong & Wang, Huanran & Zhang, Haoran, 2019. "Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 138(C), pages 326-339.
    19. Guizzi, Giuseppe Leo & Manno, Michele & Tolomei, Ludovica Maria & Vitali, Ruggero Maria, 2015. "Thermodynamic analysis of a liquid air energy storage system," Energy, Elsevier, vol. 93(P2), pages 1639-1647.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Chen, Jiaxiang & Yang, Luwei & An, Baolin & Hu, Jianying & Wang, Junjie, 2022. "Unsteady analysis of the cold energy storage heat exchanger in a liquid air energy storage system," Energy, Elsevier, vol. 242(C).
    3. Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Mylena Vieira Pinto Menezes & Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva, 2022. "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)," Energies, MDPI, vol. 15(8), pages 1-16, April.
    5. Li, Da & Duan, Liqiang, 2022. "Design and analysis of flexible integration of solar aided liquid air energy storage system," Energy, Elsevier, vol. 259(C).
    6. Park, Jinwoo & Cho, Seungsik & Qi, Meng & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2021. "Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility," Energy, Elsevier, vol. 216(C).
    7. Ding, Xingqi & Zhou, Yufei & Zheng, Nan & Desideri, Umberto & Duan, Liqiang, 2024. "Emergy analysis and comprehensive sustainability investigation of a solar-aided liquid air energy storage system based on life cycle assessment," Applied Energy, Elsevier, vol. 365(C).
    8. Xue, Xiao-Dai & Zhang, Tong & Zhang, Xue-Lin & Ma, Lin-Rui & He, Ya-Ling & Li, Ming-Jia & Mei, Sheng-Wei, 2021. "Performance evaluation and exergy analysis of a novel combined cooling, heating and power (CCHP) system based on liquid air energy storage," Energy, Elsevier, vol. 222(C).
    9. Kheshti, Mostafa & Zhao, Xiaowei & Liang, Ting & Nie, Binjian & Ding, Yulong & Greaves, Deborah, 2022. "Liquid air energy storage for ancillary services in an integrated hybrid renewable system," Renewable Energy, Elsevier, vol. 199(C), pages 298-307.
    10. Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
    11. Tafone, Alessio & Romagnoli, Alessandro & Borri, Emiliano & Comodi, Gabriele, 2019. "New parametric performance maps for a novel sizing and selection methodology of a Liquid Air Energy Storage system," Applied Energy, Elsevier, vol. 250(C), pages 1641-1656.
    12. Incer-Valverde, Jimena & Hamdy, Sarah & Morosuk, Tatiana & Tsatsaronis, George, 2021. "Improvement perspectives of cryogenics-based energy storage," Renewable Energy, Elsevier, vol. 169(C), pages 629-640.
    13. Fan, Xiaoyu & Xu, Hao & Li, Yihong & Li, Junxian & Wang, Zhikang & Gao, Zhaozhao & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2024. "A novel liquid air energy storage system with efficient thermal storage: Comprehensive evaluation of optimal configuration," Applied Energy, Elsevier, vol. 371(C).
    14. Lu, Yilin & Xu, Jingxuan & Chen, Xi & Tian, Yafen & Zhang, Hua, 2023. "Design and thermodynamic analysis of an advanced liquid air energy storage system coupled with LNG cold energy, ORCs and natural resources," Energy, Elsevier, vol. 275(C).
    15. Wang, Chen & Zhang, Xiaosong & You, Zhanping & Zhang, Muxing & Huang, Shifang & She, Xiaohui, 2021. "The effect of air purification on liquid air energy storage – An analysis from molecular to systematic modelling," Applied Energy, Elsevier, vol. 300(C).
    16. He, Tianbiao & Lv, Hongyu & Shao, Zixian & Zhang, Jibao & Xing, Xialian & Ma, Huigang, 2020. "Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling," Applied Energy, Elsevier, vol. 277(C).
    17. Vecchi, Andrea & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Integrated techno-economic assessment of Liquid Air Energy Storage (LAES) under off-design conditions: Links between provision of market services and thermodynamic performance," Applied Energy, Elsevier, vol. 262(C).
    18. Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation," Applied Energy, Elsevier, vol. 362(C).
    19. Peng, Xiaodong & She, Xiaohui & Li, Chuan & Luo, Yimo & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2019. "Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction," Applied Energy, Elsevier, vol. 250(C), pages 1190-1201.
    20. Cetegen, Shaylin A. & Gundersen, Truls & Barton, Paul I., 2024. "Evaluating economic feasibility of liquid air energy storage systems in US and European markets," Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924013217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.