IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224027300.html
   My bibliography  Save this article

Theory of time constant correlation of a porous bed thermal energy storage tank - Experimental and numerical proof of concept

Author

Listed:
  • Ochmann, Jakub
  • Rusin, Krzysztof
  • Jurczyk, Michał
  • Rulik, Sebastian
  • Bartela, Łukasz

Abstract

Analytical modeling of energy systems is used to estimate the potential of the system, but several simplifications used lead to progressive deviations from the actual potential. Thermal Energy Storage tanks are most often treated as black boxes, by limiting their characteristics to their energy efficiency and basic capacity only. This paper introduces the theory of a time constant that correlates the basic parameters of a porous bed heat storage tank and allows the charge level of the tank to be determined during the charging stage. The correlation for the time constant has a coefficient that has been fully validated both experimentally and numerically for a wide range of parameters. Coefficient values for different precision test runs have been indicated, and the prediction deviation using the time constant does not exceed a value of 5 % relative to the actual results. The proposed methodology for the analytical model of the tank accurately represents the cyclic operation of the heat storage tank. It has also been shown that the cyclic operation of the heat storage tank fixes the charge level in the range of 0.16–0.79. The methodology presented can be used to modelling and designing energy systems with heat storage.

Suggested Citation

  • Ochmann, Jakub & Rusin, Krzysztof & Jurczyk, Michał & Rulik, Sebastian & Bartela, Łukasz, 2024. "Theory of time constant correlation of a porous bed thermal energy storage tank - Experimental and numerical proof of concept," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027300
    DOI: 10.1016/j.energy.2024.132956
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224027300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haneklaus, Nils & Qvist, Staffan & Gładysz, Paweł & Bartela, Łukasz, 2023. "Why coal-fired power plants should get nuclear-ready," Energy, Elsevier, vol. 280(C).
    2. Schwarzmayr, Paul & Birkelbach, Felix & Walter, Heimo & Hofmann, René, 2023. "Standby efficiency and thermocline degradation of a packed bed thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 337(C).
    3. Glendenning, I., 1976. "Long-term prospects for compressed air storage," Applied Energy, Elsevier, vol. 2(1), pages 39-56, January.
    4. Courtois, Nicolas & Najafiyazdi, Mostafa & Lotfalian, Reza & Boudreault, Richard & Picard, Mathieu, 2021. "Analytical expression for the evaluation of multi-stage adiabatic-compressed air energy storage (A-CAES) systems cycle efficiency," Applied Energy, Elsevier, vol. 288(C).
    5. Otitoju, Olajide & Oko, Eni & Wang, Meihong, 2023. "Modelling, scale-up and techno-economic assessment of rotating packed bed absorber for CO2 capture from a 250 MWe combined cycle gas turbine power plant," Applied Energy, Elsevier, vol. 335(C).
    6. Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
    7. Łukasz Bartela & Paweł Gładysz & Jakub Ochmann & Staffan Qvist & Lou Martinez Sancho, 2022. "Repowering a Coal Power Unit with Small Modular Reactors and Thermal Energy Storage," Energies, MDPI, vol. 15(16), pages 1-28, August.
    8. Kothari, Rohit & Hemmingsen, Casper Schytte & Voigt, Niels Vinther & La Seta, Angelo & Nielsen, Kenny Krogh & Desai, Nishith B. & Vijayan, Akhil & Haglind, Fredrik, 2024. "Numerical and experimental analysis of instability in high temperature packed-bed rock thermal energy storage systems," Applied Energy, Elsevier, vol. 358(C).
    9. Rusin, Krzysztof & Ochmann, Jakub & Bartela, Łukasz & Rulik, Sebastian & Stanek, Bartosz & Jurczyk, Michał & Waniczek, Sebastian, 2022. "Influence of geometrical dimensions and particle diameter on exergy performance of packed-bed thermal energy storage," Energy, Elsevier, vol. 260(C).
    10. Ochmann, J. & Rusin, K. & Bartela, Ł., 2023. "Comprehensive analytical model of energy and exergy performance of the thermal energy storage," Energy, Elsevier, vol. 283(C).
    11. Katla, Daria & Węcel, Daniel & Jurczyk, Michał & Skorek-Osikowska, Anna, 2023. "Preliminary experimental study of a methanation reactor for conversion of H2 and CO2 into synthetic natural gas (SNG)," Energy, Elsevier, vol. 263(PD).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ochmann, J. & Rusin, K. & Bartela, Ł., 2023. "Comprehensive analytical model of energy and exergy performance of the thermal energy storage," Energy, Elsevier, vol. 283(C).
    2. Ghiasirad, Hamed & Gholizadeh, Towhid & Ochmann, Jakub & Jurczyk, Michal & Bartela, Lukasz & Skorek-Osikowska, Anna, 2024. "Synergizing compressed air energy storage and liquefied natural gas regasification in a power-to-biofuels plant," Energy, Elsevier, vol. 308(C).
    3. Roos, P. & Haselbacher, A., 2022. "Analytical modeling of advanced adiabatic compressed air energy storage: Literature review and new models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    4. Jakub Ochmann & Michał Jurczyk & Krzysztof Rusin & Sebastian Rulik & Łukasz Bartela & Wojciech Uchman, 2024. "Solution for Post-Mining Sites: Thermo-Economic Analysis of a Large-Scale Integrated Energy Storage System," Energies, MDPI, vol. 17(8), pages 1-21, April.
    5. Cui, Jie & Yang, Xueming & Chen, Jianing & Su, Hui & Xie, Jianfei, 2024. "Multi-perspective analysis of adiabatic compressed air energy storage system with cascaded packed bed latent heat storage under variable conditions," Energy, Elsevier, vol. 305(C).
    6. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    7. Michał Jurczyk & Tomasz Spietz & Agata Czardybon & Szymon Dobras & Karina Ignasiak & Łukasz Bartela & Wojciech Uchman & Jakub Ochmann, 2024. "Review of Thermal Energy Storage Materials for Application in Large-Scale Integrated Energy Systems—Methodology for Matching Heat Storage Solutions for Given Applications," Energies, MDPI, vol. 17(14), pages 1-28, July.
    8. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    9. Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).
    10. Zhang, Weifeng & Ding, Jialu & Yin, Suzhen & Zhang, Fangyuan & Zhang, Yao & Liu, Zhan, 2024. "Thermo-economic optimization of an artificial cavern compressed air energy storage with CO2 pressure stabilizing unit," Energy, Elsevier, vol. 294(C).
    11. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    12. Sanmartí, Oriol & Vera, Jordi & Torras, Santiago & Pérez-Segarra, Carlos D., 2024. "Parametric study for a structured thermal energy storage system for concentrated solar power plants," Energy, Elsevier, vol. 305(C).
    13. Xiaosheng Peng & Kai Cheng & Jianxun Lang & Zuowei Zhang & Tao Cai & Shanxu Duan, 2021. "Short-Term Wind Power Prediction for Wind Farm Clusters Based on SFFS Feature Selection and BLSTM Deep Learning," Energies, MDPI, vol. 14(7), pages 1-18, March.
    14. Mohammed Issa Shahateet & Ghani Albaali & Abdul Ghafoor Saidi, 2021. "Energy and Environmental Analysis of Solar Air Cooling with 2-Stages Adsorption Chiller in Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 16-26.
    15. Huang, Jingjian & Xu, Yujie & Guo, Huan & Geng, Xiaoqian & Chen, Haisheng, 2022. "Dynamic performance and control scheme of variable-speed compressed air energy storage," Applied Energy, Elsevier, vol. 325(C).
    16. Zhihua Lin & Zhitao Zuo & Wenbin Guo & Jianting Sun & Qi Liang & Haisheng Chen, 2021. "Experimental Study on Effects of Adjustable Vaned Diffusers on Impeller Backside Cavity of Centrifugal Compressor in CAES," Energies, MDPI, vol. 14(19), pages 1-20, September.
    17. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
    18. Li, Zongkun & Yan, Yiming & Fan, Guangming & Zeng, Xiaobo & Hao, Shuai & Yan, Changqi, 2024. "Non-uniform boiling heat transfer characteristics and calculation evaluation in U-tube steam generator tube bundle," Energy, Elsevier, vol. 303(C).
    19. Kim, Hyung-Mok & Rutqvist, Jonny & Ryu, Dong-Woo & Choi, Byung-Hee & Sunwoo, Choon & Song, Won-Kyong, 2012. "Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance," Applied Energy, Elsevier, vol. 92(C), pages 653-667.
    20. Madlener, Reinhard & Latz, Jochen, 2013. "Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power," Applied Energy, Elsevier, vol. 101(C), pages 299-309.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.