IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v232y2018icp229-244.html
   My bibliography  Save this item

A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Guo‐Feng Fan & Yan‐Hui Guo & Jia‐Mei Zheng & Wei‐Chiang Hong, 2020. "A generalized regression model based on hybrid empirical mode decomposition and support vector regression with back‐propagation neural network for mid‐short‐term load forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 737-756, August.
  2. Yixiang Ma & Lean Yu & Guoxing Zhang, 2022. "A Hybrid Short-Term Load Forecasting Model Based on a Multi-Trait-Driven Methodology and Secondary Decomposition," Energies, MDPI, vol. 15(16), pages 1-20, August.
  3. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Ribeiro, Gabriel Trierweiler & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2023. "Cooperative ensemble learning model improves electric short-term load forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  4. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
  5. Wu, Zhuochun & Zhao, Xiaochen & Ma, Yuqing & Zhao, Xinyan, 2019. "A hybrid model based on modified multi-objective cuckoo search algorithm for short-term load forecasting," Applied Energy, Elsevier, vol. 237(C), pages 896-909.
  6. Yang, Youlong & Che, Jinxing & Deng, Chengzhi & Li, Li, 2019. "Sequential grid approach based support vector regression for short-term electric load forecasting," Applied Energy, Elsevier, vol. 238(C), pages 1010-1021.
  7. Laouafi, Abderrezak & Laouafi, Farida & Boukelia, Taqiy Eddine, 2022. "An adaptive hybrid ensemble with pattern similarity analysis and error correction for short-term load forecasting," Applied Energy, Elsevier, vol. 322(C).
  8. Hisham Alghamdi & Ghulam Hafeez & Sajjad Ali & Safeer Ullah & Muhammad Iftikhar Khan & Sadia Murawwat & Lyu-Guang Hua, 2023. "An Integrated Model of Deep Learning and Heuristic Algorithm for Load Forecasting in Smart Grid," Mathematics, MDPI, vol. 11(21), pages 1-22, November.
  9. Bashiri Behmiri, Niaz & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks," Energy, Elsevier, vol. 278(C).
  10. Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
  11. Faisal Mohammad & Mohamed A. Ahmed & Young-Chon Kim, 2021. "Efficient Energy Management Based on Convolutional Long Short-Term Memory Network for Smart Power Distribution System," Energies, MDPI, vol. 14(19), pages 1-23, September.
  12. Bo Hu & Jian Xu & Zuoxia Xing & Pengfei Zhang & Jia Cui & Jinglu Liu, 2022. "Short-Term Combined Forecasting Method of Park Load Based on CEEMD-MLR-LSSVR-SBO," Energies, MDPI, vol. 15(8), pages 1-14, April.
  13. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
  14. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
  15. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).
  16. Wang, Jianzhou & Xing, Qianyi & Zeng, Bo & Zhao, Weigang, 2022. "An ensemble forecasting system for short-term power load based on multi-objective optimizer and fuzzy granulation," Applied Energy, Elsevier, vol. 327(C).
  17. Li, Chen, 2020. "Designing a short-term load forecasting model in the urban smart grid system," Applied Energy, Elsevier, vol. 266(C).
  18. Yang, Wendong & Wang, Jianzhou & Niu, Tong & Du, Pei, 2019. "A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting," Applied Energy, Elsevier, vol. 235(C), pages 1205-1225.
  19. Koo, Bonchan & Chang, Seungjoon & Kwon, Hweeung, 2023. "Digital twin for natural gas infrastructure operation and management via streaming dynamic mode decomposition with control," Energy, Elsevier, vol. 274(C).
  20. Shaoqian Pei & Hui Qin & Liqiang Yao & Yongqi Liu & Chao Wang & Jianzhong Zhou, 2020. "Multi-Step Ahead Short-Term Load Forecasting Using Hybrid Feature Selection and Improved Long Short-Term Memory Network," Energies, MDPI, vol. 13(16), pages 1-23, August.
  21. Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
  22. Sun, Mucun & Feng, Cong & Zhang, Jie, 2019. "Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation," Applied Energy, Elsevier, vol. 256(C).
  23. Che, Jinxing & Yuan, Fang & Zhu, Suling & Yang, Youlong, 2022. "An adaptive ensemble framework with representative subset based weight correction for short-term forecast of peak power load," Applied Energy, Elsevier, vol. 328(C).
  24. Rafati, Amir & Joorabian, Mahmood & Mashhour, Elaheh, 2020. "An efficient hour-ahead electrical load forecasting method based on innovative features," Energy, Elsevier, vol. 201(C).
  25. Zheng, Zhuang & Chen, Hainan & Luo, Xiaowei, 2019. "A Kalman filter-based bottom-up approach for household short-term load forecast," Applied Energy, Elsevier, vol. 250(C), pages 882-894.
  26. Bermeo-Ayerbe, Miguel Angel & Ocampo-Martinez, Carlos & Diaz-Rozo, Javier, 2022. "Data-driven energy prediction modeling for both energy efficiency and maintenance in smart manufacturing systems," Energy, Elsevier, vol. 238(PB).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.