IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v215y2018icp54-62.html
   My bibliography  Save this item

Decoupling energy use and economic growth: Counter evidence from structural effects and embodied energy in trade

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).
  2. Valadkhani, Abbas & Nguyen, Jeremy & Bowden, Mark, 2019. "Pathways to reduce CO2 emissions as countries proceed through stages of economic development," Energy Policy, Elsevier, vol. 129(C), pages 268-278.
  3. Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
  4. Wasniewski, Krzysztof, 2020. "Energy efficiency as manifestation of collective intelligence in human societies," Energy, Elsevier, vol. 191(C).
  5. Moreau, Vincent & Neves, Catarina Amarante De Oliveira & Vuille, François, 2019. "Is decoupling a red herring? The role of structural effects and energy policies in Europe," Energy Policy, Elsevier, vol. 128(C), pages 243-252.
  6. Larry Hughes & Moniek Jong & Zach Thorne, 2021. "(De)coupling and (De)carbonizing in the economies and energy systems of the G20," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5614-5639, April.
  7. Tzen-Ying Ling & Wei-Kai Hung & Chun-Tsu Lin & Michael Lu, 2020. "Dealing with Green Gentrification and Vertical Green-Related Urban Well-Being: A Contextual-Based Design Framework," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
  8. Tomas Balezentis & Kristiaan Kerstens & Zhiyang Shen, 2022. "Economic and Environmental Decomposition of Luenberger-Hicks-Moorsteen Total Factor Productivity Indicator: Empirical Analysis of Chinese Textile Firms With a Focus on Reporting Infeasibilities and Qu," Post-Print hal-03833245, HAL.
  9. Evelyn Dietsche, 2020. "Taxing extractive resources in the transition to a low-carbon future," WIDER Working Paper Series wp-2020-125, World Institute for Development Economic Research (UNU-WIDER).
  10. Zhou, Bo & Zhang, Ying & Zhou, Peng, 2021. "Multilateral political effects on outbound tourism," Annals of Tourism Research, Elsevier, vol. 88(C).
  11. , Aisdl, 2021. "Banking Development, Economic Growth and Energy Consumption in Vietnam," OSF Preprints tnvkc, Center for Open Science.
  12. Kaltenegger, Oliver, 2020. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," Applied Energy, Elsevier, vol. 261(C).
  13. Oguzhan Aslanturk & Goktug K pr zl, 2020. "The Role of Renewable Energy in Ensuring Energy Security of Supply and Reducing Energy-Related Import," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 354-359.
  14. Velasco-Fernández, Raúl & Giampietro, Mario & Bukkens, Sandra G.F., 2018. "Analyzing the energy performance of manufacturing across levels using the end-use matrix," Energy, Elsevier, vol. 161(C), pages 559-572.
  15. Liu, Bin & Zhang, Lei & Sun, Jide & Wang, Dedong & Liu, Chunlu & Luther, Mark & Xu, Youquan, 2020. "Analysis and comparison of embodied energies in gross exports of the construction sector by means of their value-added origins," Energy, Elsevier, vol. 191(C).
  16. Zimmermann, Michel & Vöhringer, Frank & Thalmann, Philippe & Moreau, Vincent, 2021. "Do rebound effects matter for Switzerland? Assessing the effectiveness of industrial energy efficiency improvements," Energy Economics, Elsevier, vol. 104(C).
  17. Heun, Matthew Kuperus & Brockway, Paul E., 2019. "Meeting 2030 primary energy and economic growth goals: Mission impossible?," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  18. Pinar Korkmaz & Roland Cunha Montenegro & Dorothea Schmid & Markus Blesl & Ulrich Fahl, 2020. "On the Way to a Sustainable European Energy System: Setting Up an Integrated Assessment Toolbox with TIMES PanEU as the Key Component," Energies, MDPI, vol. 13(3), pages 1-36, February.
  19. Askar A. Akaev & Olga I. Davydova, 2021. "A Mathematical Description of Selected Energy Transition Scenarios in the 21st Century, Intended to Realize the Main Goals of the Paris Climate Agreement," Energies, MDPI, vol. 14(9), pages 1-28, April.
  20. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  21. Ángela García-Alaminos & Fabio Monsalve & Jorge Zafrilla & Maria-Angeles Cadarso, 2020. "Unmasking social distant damage of developed regions’ lifestyle: A decoupling analysis of the indecent labour footprint," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-17, April.
  22. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
  23. Martín García Vaquero & Antonio Sánchez-Bayón & José Lominchar, 2021. "European Green Deal and Recovery Plan: Green Jobs, Skills and Wellbeing Economics in Spain," Energies, MDPI, vol. 14(14), pages 1-20, July.
  24. Ur Rehman, Faheem & Islam, Md. Monirul, 2023. "Does energy infrastructure spur total factor productivity (TFP) in middle-income economies? An application of a novel energy infrastructure index," Applied Energy, Elsevier, vol. 336(C).
  25. Jinghan Chen & Wen Zhou & Hongtao Yang, 2019. "Is Embodied Energy a Better Starting Point for Solving Energy Security Issues?—Based on an Overview of Embodied Energy-Related Research," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
  26. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
  27. Lanting Zeng & Xiwen Zhou & Liping Zhang, 2022. "High-Quality Industrial Growth Decoupling from Energy Consumption—The Case of China’s 23 Industrial Sectors," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
  28. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
  29. Stefano Di Bucchianico & Federica Cappelli, 2021. "Exploring the theoretical link between profitability and luxury emissions," Working Papers PKWP2114, Post Keynesian Economics Society (PKES).
  30. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  31. Yiyao Wang & Caizhi Sun & Wei Zou, 2021. "Study on the Interactive Relationship Between Marine Economic Growth and Marine Environmental Pressure in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(1), pages 117-133, May.
  32. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
  33. Shemelis Kebede Hundie & Megersa Debela Daksa, 2019. "Does energy-environmental Kuznets curve hold for Ethiopia? The relationship between energy intensity and economic growth," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-21, December.
  34. Oluwatoyin J. Gbadeyan & Joseph Muthivhi & Linda Z. Linganiso & Nirmala Deenadayalu, 2024. "Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review," Clean Technol., MDPI, vol. 6(3), pages 1-38, August.
  35. Skare, Marinko & Ozturk, Ilhan & Porada-Rochoń, Małgorzata & Stjepanovic, Sasa, 2024. "Energy as the new frontier: Dynamic panel data analysis revealing energy's transformative role in economic growth and technological progress," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
  36. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
  37. Chinhao Chong & Xi Zhang & Geng Kong & Linwei Ma & Zheng Li & Weidou Ni & Eugene-Hao-Chen Yu, 2021. "A Visualization Method of the Economic Input–Output Table: Mapping Monetary Flows in the Form of Sankey Diagrams," Sustainability, MDPI, vol. 13(21), pages 1-56, November.
  38. Lu, Hongfang & Xu, FengYing & Liu, Hongxiao & Wang, Jun & Campbell, Daniel E. & Ren, Hai, 2019. "Emergy-based analysis of the energy security of China," Energy, Elsevier, vol. 181(C), pages 123-135.
  39. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
  40. Hong Anh Thi Nguyen, 2021. "Banking Development, Economic Growth and Energy Consumption in Vietnam," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 632-638.
  41. Song, Xiaoxin & Li, Rongrong, 2023. "Tracing and excavating critical paths and sectors for embodied energy consumption in global supply chains: A case study of China," Energy, Elsevier, vol. 284(C).
  42. Ripa, M. & Di Felice, L.J. & Giampietro, M., 2021. "The energy metabolism of post-industrial economies. A framework to account for externalization across scales," Energy, Elsevier, vol. 214(C).
  43. Benedetti, Ilaria & Guarini, Giulio & Laureti, Tiziana, 2023. "Digitalization in Europe: A potential driver of energy efficiency for the twin transition policy strategy," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
  44. Wang, Yanqiu & Zhu, Zhiwei & Zhu, Zhaoge & Liu, Zhenbin, 2019. "Analysis of China's energy consumption changing using the Mean Rate of Change Index and the logarithmic mean divisia index," Energy, Elsevier, vol. 167(C), pages 275-282.
  45. Liu, Tie-Ying & Lee, Chien-Chiang, 2020. "Convergence of the world’s energy use," Resource and Energy Economics, Elsevier, vol. 62(C).
  46. Liu, Bin & Gao, Qun & Jin, Hongyu & Lei, Yu & Liu, Chunlu, 2022. "System indeterminacy analysis in the embodied energy network of global construction industries," Energy, Elsevier, vol. 261(PA).
  47. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2023. "Globalization of forest land use: Increasing threats on climate-vulnerable regions," Land Use Policy, Elsevier, vol. 132(C).
  48. Jozef R. Pattiruhu & Shella Kriekhoff, 2022. "Energy Consumption Impact on Economic Management: Evidence from Indonesian Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 270-279, May.
  49. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).
  50. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
  51. Yijia Huang & Jiaqi Zhang & Jinqun Wu, 2020. "Integrating Sustainability Assessment into Decoupling Analysis: A Focus on the Yangtze River Delta Urban Agglomerations," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
  52. Zhao, Jing & Sinha, Avik & Inuwa, Nasiru & Wang, Yihan & Murshed, Muntasir & Abbasi, Kashif Raza, 2022. "Does structural transformation in economy impact inequality in renewable energy productivity? Implications for sustainable development," Renewable Energy, Elsevier, vol. 189(C), pages 853-864.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.