IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10879-d903038.html
   My bibliography  Save this article

High-Quality Industrial Growth Decoupling from Energy Consumption—The Case of China’s 23 Industrial Sectors

Author

Listed:
  • Lanting Zeng

    (Economics and Trade College, Fujian Jiangxia University, Fuzhou 350108, China
    Economics and Management College, Fujian Polytechnic Normal University, Fuzhou 350308, China)

  • Xiwen Zhou

    (Economics and Trade College, Fujian Jiangxia University, Fuzhou 350108, China)

  • Liping Zhang

    (Economics and Trade College, Fujian Jiangxia University, Fuzhou 350108, China)

Abstract

Using the data of 23 industrial sectors in China, this paper constructs an industrial spatial weight matrix based on an input–output table and employs a spatial model to distinguish the spillover effects among industrial sectors and find sectors’ heterogeneity and connectivity on the decoupling system, to explore the specific driving power source for stable and deeper industrial decoupling. The results show that unstable industrial growth decoupling from energy consumption appears and differs in the capital–labor–resource-intensive sectors. Decoupling effects spill over from the neighboring sectors and act as a warning on decoupling in the local sector. Both technical progress and scale efficiency except technical efficiency play a driving role in deepening industrial decoupling in the local sector and spill out positive effects on the green development of the neighboring sector. Capital, as the substitute for energy both intra and inter sectors, facilitates decoupling as a driving factor, while obvious resistant force against decoupling is brought by foreign direct investment (FDI) and energy structure. Decoupling in resource-intensive sectors has great potential due to the positive effects from technology and scale efficiency improvement, which are substitute effects. Industrial decoupling in the labor-intensive sector, where low-skilled labor forms obstruction force against green decoupling, only benefits from the technological progress. FDI and scale efficiency dominate as driving sources for decoupling in the capital-intensive sector.

Suggested Citation

  • Lanting Zeng & Xiwen Zhou & Liping Zhang, 2022. "High-Quality Industrial Growth Decoupling from Energy Consumption—The Case of China’s 23 Industrial Sectors," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10879-:d:903038
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10879/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10879/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schymura, Michael & Voigt, Sebastian, 2014. "What drives changes in carbon emissions? An index decomposition approach for 40 countries," ZEW Discussion Papers 14-038, ZEW - Leibniz Centre for European Economic Research.
    2. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    3. Lee, Jung Wan, 2013. "The contribution of foreign direct investment to clean energy use, carbon emissions and economic growth," Energy Policy, Elsevier, vol. 55(C), pages 483-489.
    4. Wu, Ya & Zhu, Qianwen & Zhu, Bangzhu, 2018. "Comparisons of decoupling trends of global economic growth and energy consumption between developed and developing countries," Energy Policy, Elsevier, vol. 116(C), pages 30-38.
    5. Zhao, Xingrong & Zhang, Xi & Shao, Shuai, 2016. "Decoupling CO2 emissions and industrial growth in China over 1993–2013: The role of investment," Energy Economics, Elsevier, vol. 60(C), pages 275-292.
    6. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    7. Moreau, Vincent & Vuille, François, 2018. "Decoupling energy use and economic growth: Counter evidence from structural effects and embodied energy in trade," Applied Energy, Elsevier, vol. 215(C), pages 54-62.
    8. Dong, Bai & Zhang, Ming & Mu, Hailin & Su, Xuanming, 2016. "Study on decoupling analysis between energy consumption and economic growth in Liaoning Province," Energy Policy, Elsevier, vol. 97(C), pages 414-420.
    9. Hao, Yu & Zhang, Tianli & Jing, Leijie & Xiao, Linqi, 2019. "Would the decoupling of electricity occur along with economic growth? Empirical evidence from the panel data analysis for 100 Chinese cities," Energy, Elsevier, vol. 180(C), pages 615-625.
    10. Chung, William & Kam, M.S. & Ip, C.Y., 2011. "A study of residential energy use in Hong Kong by decomposition analysis, 1990–2007," Applied Energy, Elsevier, vol. 88(12), pages 5180-5187.
    11. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    12. Burke, Paul J. & Csereklyei, Zsuzsanna, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," Energy Economics, Elsevier, vol. 58(C), pages 199-210.
    13. Richard Wood & Konstantin Stadler & Moana Simas & Tatyana Bulavskaya & Stefan Giljum & Stephan Lutter & Arnold Tukker, 2018. "Growth in Environmental Footprints and Environmental Impacts Embodied in Trade: Resource Efficiency Indicators from EXIOBASE3," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 553-564, June.
    14. Hübler, Michael, 2011. "Technology diffusion under contraction and convergence: A CGE analysis of China," Energy Economics, Elsevier, vol. 33(1), pages 131-142, January.
    15. Boqiang Lin, & Wang, Miao, 2019. "Possibilities of decoupling for China’s energy consumption from economic growth: A temporal-spatial analysis," Energy, Elsevier, vol. 185(C), pages 951-960.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiguo Fan & Mengmeng Meng & Jianchang Lu & Xiaobin Dong & Hejie Wei & Xuechao Wang & Qing Zhang, 2020. "Decoupling Elasticity and Driving Factors of Energy Consumption and Economic Development in the Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    2. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    3. Yong Yang & Junsong Jia & Adam T. Devlin & Yangming Zhou & Dongming Xie & Min Ju, 2020. "Decoupling and Decomposition Analysis of Residential Energy Consumption from Economic Growth during 2000–2017: A Comparative Study of Urban and Rural Guangdong, China," Energies, MDPI, vol. 13(17), pages 1-21, August.
    4. Liu, Tie-Ying & Lee, Chien-Chiang, 2020. "Convergence of the world’s energy use," Resource and Energy Economics, Elsevier, vol. 62(C).
    5. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
    6. Shemelis Kebede Hundie & Megersa Debela Daksa, 2019. "Does energy-environmental Kuznets curve hold for Ethiopia? The relationship between energy intensity and economic growth," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-21, December.
    7. Min Su & Shasha Wang & Rongrong Li & Ningning Guo, 2020. "Decomposition analysis of the decoupling process between economic growth and carbon emission in Beijing city, China: A sectoral perspective," Energy & Environment, , vol. 31(6), pages 961-982, September.
    8. Li, Yonglin & Zuo, Zhili & Cheng, Yue & Cheng, Jinhua & Xu, Deyi, 2023. "Towards a decoupling between regional economic growth and CO2 emissions in China's mining industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 80(C).
    9. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    10. Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
    11. Sol, Joeri, 2019. "Economics in the anthropocene: species extinction or steady state economics," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    12. Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).
    13. Oluwatoyin J. Gbadeyan & Joseph Muthivhi & Linda Z. Linganiso & Nirmala Deenadayalu, 2024. "Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review," Clean Technol., MDPI, vol. 6(3), pages 1-38, August.
    14. Sheng, Pengfei & Li, Jun & Zhai, Mengxin & Huang, Shoujun, 2020. "Coupling of economic growth and reduction in carbon emissions at the efficiency level: Evidence from China," Energy, Elsevier, vol. 213(C).
    15. Liu, Yiming & Hao, Yu & Gao, Yixuan, 2017. "The environmental consequences of domestic and foreign investment: Evidence from China," Energy Policy, Elsevier, vol. 108(C), pages 271-280.
    16. Ofori, Isaac K & Gbolonyo, Emmanuel Y. & Ojong, Nathanael, 2022. "Foreign Direct Investment and Inclusive Green Growth in Africa: Energy Efficiency Contingencies and Thresholds," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, pages 1-58.
    17. Ge, Yihan & Yuan, Rong, 2024. "Exploring decoupling relationship between ICT investments and energy consumption in China's provinces: Factors and policy implications," Energy, Elsevier, vol. 286(C).
    18. Agyeman, Stephen Duah & Lin, Boqiang, 2022. "Nonrenewable and renewable energy substitution, and low–carbon energy transition: Evidence from North African countries," Renewable Energy, Elsevier, vol. 194(C), pages 378-395.
    19. Wei, Wendong & Cai, Wenqiu & Guo, Yi & Bai, Caiquan & Yang, Luzhen, 2020. "Decoupling relationship between energy consumption and economic growth in China's provinces from the perspective of resource security," Resources Policy, Elsevier, vol. 68(C).
    20. Anser, Muhammad Khalid & Yousaf, Zahid & Zaman, Khalid & Nassani, Abdelmohsen A. & Alotaibi, Saad M. & Jambari, Hanifah & Khan, Aqeel & Kabbani, Ahmad, 2020. "Determination of resource curse hypothesis in mediation of financial development and clean energy sources: Go-for-green resource policies," Resources Policy, Elsevier, vol. 66(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10879-:d:903038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.