IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v162y2016icp401-415.html
   My bibliography  Save this item

Economic potential for future demand response in Germany – Modeling approach and case study

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wilko Heitkoetter & Wided Medjroubi & Thomas Vogt & Carsten Agert, 2022. "Economic Assessment of Demand Response Using Coupled National and Regional Optimisation Models," Energies, MDPI, vol. 15(22), pages 1-25, November.
  2. Roldán Fernández, Juan Manuel & Payán, Manuel Burgos & Santos, Jesús Manuel Riquelme & García, Ángel Luis Trigo, 2017. "The voluntary price for the small consumer: Real-time pricing in Spain," Energy Policy, Elsevier, vol. 102(C), pages 41-51.
  3. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
  4. Klaucke, Franziska & Hoffmann, Christian & Hofmann, Mathias & Tsatsaronis, George, 2020. "Impact of the chlorine value chain on the demand response potential of the chloralkali process," Applied Energy, Elsevier, vol. 276(C).
  5. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
  6. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  7. Hu, Ming-Che & Lu, Su-Ying & Chen, Yen-Haw, 2016. "Stochastic–multiobjective market equilibrium analysis of a demand response program in energy market under uncertainty," Applied Energy, Elsevier, vol. 182(C), pages 500-506.
  8. Zhang, Sufang & Jiao, Yiqian & Chen, Wenjun, 2017. "Demand-side management (DSM) in the context of China's on-going power sector reform," Energy Policy, Elsevier, vol. 100(C), pages 1-8.
  9. Muhammad Shahid Mastoi & Hafiz Mudassir Munir & Shenxian Zhuang & Mannan Hassan & Muhammad Usman & Ahmad Alahmadi & Basem Alamri, 2022. "A Comprehensive Analysis of the Power Demand–Supply Situation, Electricity Usage Patterns, and the Recent Development of Renewable Energy in China," Sustainability, MDPI, vol. 14(6), pages 1-34, March.
  10. Hans Christian Gils & Sonja Simon & Rafael Soria, 2017. "100% Renewable Energy Supply for Brazil—The Role of Sector Coupling and Regional Development," Energies, MDPI, vol. 10(11), pages 1-22, November.
  11. Héctor Marañón-Ledesma & Asgeir Tomasgard, 2019. "Analyzing Demand Response in a Dynamic Capacity Expansion Model for the European Power Market," Energies, MDPI, vol. 12(15), pages 1-24, August.
  12. Dranka, Géremi Gilson & Ferreira, Paula, 2020. "Load flexibility potential across residential, commercial and industrial sectors in Brazil," Energy, Elsevier, vol. 201(C).
  13. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
  14. Alejandro Martín-Crespo & Sergio Saludes-Rodil & Enrique Baeyens, 2021. "Flexibility Management with Virtual Batteries of Thermostatically Controlled Loads: Real-Time Control System and Potential in Spain," Energies, MDPI, vol. 14(6), pages 1-18, March.
  15. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
  16. Jinghong Zhou & Ke Chen & Weidong Wang, 2023. "A Power Evolution Game Model and Its Application Contained in Virtual Power Plants," Energies, MDPI, vol. 16(11), pages 1-22, May.
  17. Ayman Esmat & Julio Usaola & María Ángeles Moreno, 2018. "Distribution-Level Flexibility Market for Congestion Management," Energies, MDPI, vol. 11(5), pages 1-24, April.
  18. Gils, Hans Christian & Simon, Sonja, 2017. "Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands," Applied Energy, Elsevier, vol. 188(C), pages 342-355.
  19. Carlo Schmitt & Felix Gaumnitz & Andreas Blank & Olivier Rebenaque & Théo Dronne & Arnault Martin & Philippe Vassilopoulos & Albert Moser & Fabien Roques, 2021. "Framework for Deterministic Assessment of Risk-Averse Participation in Local Flexibility Markets †," Energies, MDPI, vol. 14(11), pages 1-34, May.
  20. Anees, Amir & Chen, Yi-Ping Phoebe, 2016. "True real time pricing and combined power scheduling of electric appliances in residential energy management system," Applied Energy, Elsevier, vol. 165(C), pages 592-600.
  21. Olkkonen, Ville & Ekström, Jussi & Hast, Aira & Syri, Sanna, 2018. "Utilising demand response in the future Finnish energy system with increased shares of baseload nuclear power and variable renewable energy," Energy, Elsevier, vol. 164(C), pages 204-217.
  22. Scharnhorst, L. & Sloot, D. & Lehmann, N. & Ardone, A. & Fichtner, W., 2024. "Barriers to demand response in the commercial and industrial sectors – An empirical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
  23. Pagnier, Laurent & Jacquod, Philippe, 2018. "How fast can one overcome the paradox of the energy transition? A physico-economic model for the European power grid," Energy, Elsevier, vol. 157(C), pages 550-560.
  24. Ringel, Marc & Schlomann, Barbara & Krail, Michael & Rohde, Clemens, 2016. "Towards a green economy in Germany? The role of energy efficiency policies," Applied Energy, Elsevier, vol. 179(C), pages 1293-1303.
  25. Hunt, Julian David & Freitas, Marcos Aurélio Vasconcelos de & Pereira Junior, Amaro Olímpio, 2017. "A review of seasonal pumped-storage combined with dams in cascade in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 385-398.
  26. Anjo, João & Neves, Diana & Silva, Carlos & Shivakumar, Abhishek & Howells, Mark, 2018. "Modeling the long-term impact of demand response in energy planning: The Portuguese electric system case study," Energy, Elsevier, vol. 165(PA), pages 456-468.
  27. Marañón-Ledesma, Hector & Tomasgard, Asgeir, 2019. "Long-Term Electricity Investments Accounting for Demand and Supply Side Flexibility," MPRA Paper 93341, University Library of Munich, Germany.
  28. Jesús Botero García & David Cardona Vásquez & John García Rendón, 2019. "Energy transition in Germany and integration of non-conventional energy sources," Documentos de Trabajo de Valor Público 17784, Universidad EAFIT.
  29. Viana, Matheus Sabino & Manassero, Giovanni & Udaeta, Miguel E.M., 2018. "Analysis of demand response and photovoltaic distributed generation as resources for power utility planning," Applied Energy, Elsevier, vol. 217(C), pages 456-466.
  30. Raman, Gururaghav & Zhao, Bo & Peng, Jimmy Chih-Hsien & Weidlich, Matthias, 2022. "Adaptive incentive-based demand response with distributed non-compliance assessment," Applied Energy, Elsevier, vol. 326(C).
  31. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
  32. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
  33. Leisen, Robin & Radek, Julian & Weber, Christoph, 2024. "Modeling combined-cycle power plants in a detailed electricity market model," Energy, Elsevier, vol. 298(C).
  34. Lechl, Michael & Fürmann, Tim & de Meer, Hermann & Weidlich, Anke, 2023. "A review of models for energy system flexibility requirements and potentials using the new FLEXBLOX taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
  35. Laura Torralba-Díaz & Christoph Schimeczek & Matthias Reeg & Georgios Savvidis & Marc Deissenroth-Uhrig & Felix Guthoff & Benjamin Fleischer & Kai Hufendiek, 2020. "Identification of the Efficiency Gap by Coupling a Fundamental Electricity Market Model and an Agent-Based Simulation Model," Energies, MDPI, vol. 13(15), pages 1-19, July.
  36. Auguadra, Marco & Ribó-Pérez, David & Gómez-Navarro, Tomás, 2023. "Planning the deployment of energy storage systems to integrate high shares of renewables: The Spain case study," Energy, Elsevier, vol. 264(C).
  37. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
  38. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
  39. Ayón, X. & Gruber, J.K. & Hayes, B.P. & Usaola, J. & Prodanović, M., 2017. "An optimal day-ahead load scheduling approach based on the flexibility of aggregate demands," Applied Energy, Elsevier, vol. 198(C), pages 1-11.
  40. Jun Dong & Huijuan Huo & Dongran Liu & Rong Li, 2017. "Evaluating the Comprehensive Performance of Demand Response for Commercial Customers by Applying Combination Weighting Techniques and Fuzzy VIKOR Approach," Sustainability, MDPI, vol. 9(8), pages 1-32, July.
  41. Pechmann, Agnes & Shrouf, Fadi & Chonin, Max & Steenhusen, Nanke, 2017. "Load-shifting potential at SMEs manufacturing sites: A methodology and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 431-438.
  42. Xu, Bing & Nayak, Amar & Gray, David & Ouenniche, Jamal, 2016. "Assessing energy business cases implemented in the North Sea Region and strategy recommendations," Applied Energy, Elsevier, vol. 172(C), pages 360-371.
  43. Hu, Bo & Zhou, P., 2022. "Can the renewable power consumption guarantee mechanism help activate China's power trading market?," Energy, Elsevier, vol. 253(C).
  44. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
  45. Aryandoust, Arsam & Lilliestam, Johan, 2017. "The potential and usefulness of demand response to provide electricity system services," Applied Energy, Elsevier, vol. 204(C), pages 749-766.
  46. Hess, Denis, 2018. "The value of a dispatchable concentrating solar power transfer from Middle East and North Africa to Europe via point-to-point high voltage direct current lines," Applied Energy, Elsevier, vol. 221(C), pages 605-645.
  47. Cortés-Arcos, Tomás & Bernal-Agustín, José L. & Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Contreras, Javier, 2017. "Multi-objective demand response to real-time prices (RTP) using a task scheduling methodology," Energy, Elsevier, vol. 138(C), pages 19-31.
  48. Fatras, Nicolas & Ma, Zheng & Jørgensen, Bo Nørregaard, 2022. "Process-to-market matrix mapping: A multi-criteria evaluation framework for industrial processes’ electricity market participation feasibility," Applied Energy, Elsevier, vol. 313(C).
  49. Sascha Samadi, 2017. "The Social Costs of Electricity Generation—Categorising Different Types of Costs and Evaluating Their Respective Relevance," Energies, MDPI, vol. 10(3), pages 1-37, March.
  50. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
  51. David Ribó-Pérez & Luis Larrosa-López & David Pecondón-Tricas & Manuel Alcázar-Ortega, 2021. "A Critical Review of Demand Response Products as Resource for Ancillary Services: International Experience and Policy Recommendations," Energies, MDPI, vol. 14(4), pages 1-25, February.
  52. Müller, Theresa & Möst, Dominik, 2018. "Demand Response Potential: Available when Needed?," Energy Policy, Elsevier, vol. 115(C), pages 181-198.
  53. Söder, Lennart & Lund, Peter D. & Koduvere, Hardi & Bolkesjø, Torjus Folsland & Rossebø, Geir Høyvik & Rosenlund-Soysal, Emilie & Skytte, Klaus & Katz, Jonas & Blumberga, Dagnija, 2018. "A review of demand side flexibility potential in Northern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 654-664.
  54. Gils, Hans Christian & Gardian, Hedda & Schmugge, Jens, 2021. "Interaction of hydrogen infrastructures with other sector coupling options towards a zero-emission energy system in Germany," Renewable Energy, Elsevier, vol. 180(C), pages 140-156.
  55. Li, Pei-Hao & Pye, Steve, 2018. "Assessing the benefits of demand-side flexibility in residential and transport sectors from an integrated energy systems perspective," Applied Energy, Elsevier, vol. 228(C), pages 965-979.
  56. Zohrabian, Angineh & Sanders, Kelly T., 2021. "Emitting less without curbing usage? Exploring greenhouse gas mitigation strategies in the water industry through load shifting," Applied Energy, Elsevier, vol. 298(C).
  57. Yamaguchi, Yohei & Chen, Chien-fei & Shimoda, Yoshiyuki & Yagita, Yoshie & Iwafune, Yumiko & Ishii, Hideo & Hayashi, Yasuhiro, 2020. "An integrated approach of estimating demand response flexibility of domestic laundry appliances based on household heterogeneity and activities," Energy Policy, Elsevier, vol. 142(C).
  58. Förster, Robert & Harding, Sebastian & Buhl, Hans Ulrich, 2024. "Unleashing the economic and ecological potential of energy flexibility: Attractiveness of real-time electricity tariffs in energy crises," Energy Policy, Elsevier, vol. 185(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.