IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v119y2014icp67-78.html
   My bibliography  Save this item

Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sun, Huaping & Edziah, Bless Kofi & Kporsu, Anthony Kwaku & Sarkodie, Samuel Asumadu & Taghizadeh-Hesary, Farhad, 2021. "Energy efficiency: The role of technological innovation and knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
  2. Chunling Li & Jun Han, 2024. "Spatial Differences, Dynamic Evolution, and Driving Factors of Carbon Emission Efficiency in National High-Tech Zones," Sustainability, MDPI, vol. 16(15), pages 1-29, July.
  3. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
  4. Zhou, D.Q. & Wang, Qunwei & Su, B. & Zhou, P. & Yao, L.X., 2016. "Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis," Applied Energy, Elsevier, vol. 166(C), pages 201-209.
  5. Qunwei Wang & Peng Zhou & Zengyao Zhao & Neng Shen, 2014. "Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach," Sustainability, MDPI, vol. 6(8), pages 1-17, August.
  6. Chin-Yi Fred Fang, 2020. "Perspective of Local Government on the Performance Assessment of District Sports and Leisure Centers," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
  7. Song, Chenxi & Li, Mingjia & Wen, Zhexi & He, Ya-Ling & Tao, Wen-Quan & Li, Yangzhe & Wei, Xiangyang & Yin, Xiaolan & Huang, Xing, 2014. "Research on energy efficiency evaluation based on indicators for industry sectors in China," Applied Energy, Elsevier, vol. 134(C), pages 550-562.
  8. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
  9. Yang, Yuan & Cai, Wenjia & Wang, Can, 2014. "Industrial CO2 intensity, indigenous innovation and R&D spillovers in China’s provinces," Applied Energy, Elsevier, vol. 131(C), pages 117-127.
  10. Zhiyu Fang & Ling Jiang & Zhong Fang, 2021. "Does Economic Policy Intervention Inhibit the Efficiency of China’s Green Energy Economy?," Sustainability, MDPI, vol. 13(23), pages 1-20, December.
  11. Chia-Jung Tu & Ming-Chung Chang & Chiang-Ping Chen, 2016. "Progressive Time-Weighted Dynamic Energy Efficiency, Energy Decoupling Rate, and Decarbonization: An Empirical Study on G7 and BRICS," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
  12. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2019. "Institutional quality, green innovation and energy efficiency," Energy Policy, Elsevier, vol. 135(C).
  13. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
  14. Sinha, Avik, 2017. "Inequality of renewable energy generation across OECD countries: A note," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 9-14.
  15. May, Gökan & Barletta, Ilaria & Stahl, Bojan & Taisch, Marco, 2015. "Energy management in production: A novel method to develop key performance indicators for improving energy efficiency," Applied Energy, Elsevier, vol. 149(C), pages 46-61.
  16. Guo, Xiaoying & Lu, Ching-Cheng & Lee, Jen-Hui & Chiu, Yung-Ho, 2017. "Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China," Energy, Elsevier, vol. 134(C), pages 392-399.
  17. Nihal Ahmed & Zeeshan Hamid & Farhan Mahboob & Khalil Ur Rehman & Muhammad Sibt e Ali & Piotr Senkus & Aneta Wysokińska-Senkus & Paweł Siemiński & Adam Skrzypek, 2022. "Causal Linkage among Agricultural Insurance, Air Pollution, and Agricultural Green Total Factor Productivity in United States: Pairwise Granger Causality Approach," Agriculture, MDPI, vol. 12(9), pages 1-17, August.
  18. Ching-Cheng Lu & Liang-Chun Lu, 2019. "Evaluating the energy efficiency of European Union countries: The dynamic data envelopment analysis," Energy & Environment, , vol. 30(1), pages 27-43, February.
  19. Fazıl Gökgöz & Ercem Erkul, 2014. "Energy Efficiency Analysis For The European Countries," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 8(1), pages 124-140.
  20. Hao, Yu & Gai, Zhiqiang & Wu, Haitao, 2020. "How do resource misallocation and government corruption affect green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 143(C).
  21. Jinchao Li & Yuwei Xiang & Huanyu Jia & Lin Chen, 2018. "Analysis of Total Factor Energy Efficiency and Its Influencing Factors on Key Energy-Intensive Industries in the Beijing-Tianjin-Hebei Region," Sustainability, MDPI, vol. 10(1), pages 1-17, January.
  22. Zeb, Aurang & Ahmad, Waseem & Asif, Muhammad & Simic, Vladimir & Senapati, Tapan & Hou, Muzhou, 2024. "Optimizing decision-making in electric power system selection: A generalized approach based on Hamacher aggregation operators for q-rung orthopair fuzzy soft sets," Applied Energy, Elsevier, vol. 367(C).
  23. Dan Wu & Ching-Cheng Lu & Xiang Chen & Pei-Chieh Tu & An-Chi Yang & Chih-Yu Yang, 2021. "Evaluating the Dynamic Energy Production Efficiency in APEC Economies," Energies, MDPI, vol. 14(14), pages 1-20, July.
  24. Tao, Xueping & Wang, Ping & Zhu, Bangzhu, 2016. "Provincial green economic efficiency of China: A non-separable input–output SBM approach," Applied Energy, Elsevier, vol. 171(C), pages 58-66.
  25. Zhang, Yue-Jun & Sun, Ya-Fang & Huang, Junling, 2018. "Energy efficiency, carbon emission performance, and technology gaps: Evidence from CDM project investment," Energy Policy, Elsevier, vol. 115(C), pages 119-130.
  26. Franz Haider & Robert Kunst & Franz Wirl, 2021. "Total factor productivity, its components and drivers," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 48(2), pages 283-327, May.
  27. Huaping Sun & Bless Kofi Edziah & Xiaoqian Song & Anthony Kwaku Kporsu & Farhad Taghizadeh-Hesary, 2020. "Estimating Persistent and Transient Energy Efficiency in Belt and Road Countries: A Stochastic Frontier Analysis," Energies, MDPI, vol. 13(15), pages 1-19, July.
  28. Honma, Satoshi & Hu, Jin-Li, 2014. "A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions," Energy, Elsevier, vol. 78(C), pages 732-739.
  29. Lin, Boqiang & Zhu, Junpeng, 2020. "Chinese electricity demand and electricity consumption efficiency: Do the structural changes matter?," Applied Energy, Elsevier, vol. 262(C).
  30. Xu, Tong & Zhu, Chunyan & Shi, Longyu & Gao, Lijie & Zhang, Miao, 2017. "Evaluating energy efficiency of public institutions in China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 17-24.
  31. Djula Borozan & Luka Borozan, 2018. "Analyzing total-factor energy efficiency in Croatian counties: evidence from a non-parametric approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 673-694, September.
  32. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
  33. P. Zhou & F. Wu & D. Q. Zhou, 2017. "Total-factor energy efficiency with congestion," Annals of Operations Research, Springer, vol. 255(1), pages 241-256, August.
  34. Zhou, D.Q. & Wu, F. & Zhou, X. & Zhou, P., 2016. "Output-specific energy efficiency assessment: A data envelopment analysis approach," Applied Energy, Elsevier, vol. 177(C), pages 117-126.
  35. Yang, Zhenbing & Shao, Shuai & Yang, Lili & Liu, Jianghua, 2017. "Differentiated effects of diversified technological sources on energy-saving technological progress: Empirical evidence from China's industrial sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1379-1388.
  36. Toshiyuki Sueyoshi & Yan Yuan, 2018. "Measuring energy usage and sustainability development in Asian nations by DEA intermediate approach," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-18, December.
  37. Zhu, Lin & Wang, Yong & Shang, Peipei & Qi, Lin & Yang, Guangchun & Wang, Ying, 2019. "Improvement path, the improvement potential and the dynamic evolution of regional energy efficiency in China: Based on an improved nonradial multidirectional efficiency analysis," Energy Policy, Elsevier, vol. 133(C).
  38. Tang, Liwei & He, Gang, 2021. "How to improve total factor energy efficiency? An empirical analysis of the Yangtze River economic belt of China," Energy, Elsevier, vol. 235(C).
  39. Zhou, Anhua & Xin, Ling & Li, Jun, 2022. "Assessing the impact of the carbon market on the improvement of China's energy and carbon emission performance," Energy, Elsevier, vol. 258(C).
  40. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
  41. Syeda Tayyaba Ijaz & Sumayya Chughtai, 2022. "The Impact of Financial, Economic and Environmental Factors on Energy Efficiency, Intensity, and Dependence: The Moderating Role of Governance and Institutional Quality," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 15-31, July.
  42. Lin, Boqiang & Sai, Rockson, 2022. "Has mining agglomeration affected energy productivity in Africa?," Energy, Elsevier, vol. 244(PA).
  43. Xu, Mengmeng & Lin, Boqiang, 2022. "Energy efficiency gains from distortion mitigation: A perspective on the metallurgical industry," Resources Policy, Elsevier, vol. 77(C).
  44. Anvar Tulaganov & Gulnara Sagindykova & Murad Isaev & Bibigul Bimbetova & Maira Kaiyrgaliyeva & Bakhitzhamal Aidosova & Aizhan Orynbassarova, 2022. "The Impact Analysis of Electricity Prices on the Energy Intensity of the Kazakhstani Economy and Sustainable Development," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 241-248, March.
  45. Li, Ke & Lin, Boqiang, 2016. "Impact of energy conservation policies on the green productivity in China’s manufacturing sector: Evidence from a three-stage DEA model," Applied Energy, Elsevier, vol. 168(C), pages 351-363.
  46. Guo, Ran & Yuan, Yijun, 2020. "Different types of environmental regulations and heterogeneous influence on energy efficiency in the industrial sector: Evidence from Chinese provincial data," Energy Policy, Elsevier, vol. 145(C).
  47. Otsuka, Akihiro, 2023. "Industrial electricity consumption efficiency and energy policy in Japan," Utilities Policy, Elsevier, vol. 81(C).
  48. Haoyuan Ma & Zhijiang Li & Rui Dong & Decai Tang, 2024. "Influence of Digital Economy on Urban Energy Efficiency in China," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
  49. Hongxu Guo & Zihan Xie & Rong Wu, 2021. "Evaluating Green Innovation Efficiency and Its Socioeconomic Factors Using a Slack-Based Measure with Environmental Undesirable Outputs," IJERPH, MDPI, vol. 18(24), pages 1-20, December.
  50. Dilawar Khan & Muhammad Nouman & Arif Ullah, 2023. "Assessing the impact of technological innovation on technically derived energy efficiency: a multivariate co-integration analysis of the agricultural sector in South Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3723-3745, April.
  51. Nelson Amowine & Zhiqiang Ma & Mingxing Li & Zhixiang Zhou & Benjamin Azembila Asunka & James Amowine, 2019. "Energy Efficiency Improvement Assessment in Africa: An Integrated Dynamic DEA Approach," Energies, MDPI, vol. 12(20), pages 1-17, October.
  52. Sueyoshi, Toshiyuki & Goto, Mika, 2018. "Resource utilization for sustainability enhancement in Japanese industries," Applied Energy, Elsevier, vol. 228(C), pages 2308-2320.
  53. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
  54. Li, Nan & Jiang, Yuqing & Mu, Hailin & Yu, Zhixin, 2018. "Efficiency evaluation and improvement potential for the Chinese agricultural sector at the provincial level based on data envelopment analysis (DEA)," Energy, Elsevier, vol. 164(C), pages 1145-1160.
  55. Guo, Wen & Liu, Xiaorui, 2022. "Market fragmentation of energy resource prices and green total factor energy efficiency in China," Resources Policy, Elsevier, vol. 76(C).
  56. Xiaorong He & Jizhi Shi & Haichao Xu & Chaoyue Cai & Qiangsheng Hu, 2022. "Tourism Development, Carbon Emission Intensity and Urban Green Economic Efficiency from the Perspective of Spatial Effects," Energies, MDPI, vol. 15(20), pages 1-23, October.
  57. Zhou, Anhua & Li, Jun, 2021. "Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China’s provincial-level data," Energy, Elsevier, vol. 228(C).
  58. Zhang, Dongyang, 2021. "Marketization, environmental regulation, and eco-friendly productivity: A Malmquist–Luenberger index for pollution emissions of large Chinese firms," Journal of Asian Economics, Elsevier, vol. 76(C).
  59. Zebin Zheng & Wenjun Xiao & Ziye Cheng, 2023. "China’s Green Total Factor Energy Efficiency Assessment Based on Coordinated Reduction in Pollution and Carbon Emission: From the 11th to the 13th Five-Year Plan," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
  60. Toshiyuki Sueyoshi & Mika Goto, 2019. "DEA Non-Radial Approach for Resource Allocation and Energy Usage to Enhance Corporate Sustainability in Japanese Manufacturing Industries," Energies, MDPI, vol. 12(9), pages 1-22, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.