IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i24p12880-d696616.html
   My bibliography  Save this article

Evaluating Green Innovation Efficiency and Its Socioeconomic Factors Using a Slack-Based Measure with Environmental Undesirable Outputs

Author

Listed:
  • Hongxu Guo

    (School of Architecture and Urban Planning, Guangdong University of Technology, 729 East Dongfeng Road, Guangzhou 510090, China)

  • Zihan Xie

    (Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Rong Wu

    (School of Architecture and Urban Planning, Guangdong University of Technology, 729 East Dongfeng Road, Guangzhou 510090, China)

Abstract

Understanding green innovation efficiency (GIE) is crucial in assessing achievements of the current development strategy scientifically. Existing literature on measuring green innovation efficiency with considering environmental undesirable outputs at the city level is limited. Consulting existing studies, this paper constructs an evaluation index system to measure green innovation efficiency and its socioeconomic impact factors. Employing a super slacks-based measure (Super-SBM) model, which takes into account undesirable outputs (industrial wastewater emissions, industrial exhaust emissions and CO 2 emissions), and a Global Malmquist–Luenberger index (GML), we calculate the green innovation efficiency of 15 cities in the Pearl River Delta (PRD) urban agglomeration from 2009 to 2017, exploring the impact factors behind green innovation efficiency using a Tobit panel regression model. The empirical results are as follows: Due to the heterogeneity of urban functional division and economic development in the Pearl River Delta, more than half of the region’s cities were found to be in ineffective or transitional states with respect to their green innovation efficiency. A GML decomposition index shows that technological efficiency and technological progress are out of step with one another in the Pearl River Delta, an asymmetry which is restricting regional green innovation growth. The influencing factors of industrial structure, the level of economic openness, and the urban informationization level are shown to have promoted green innovation efficiency in the Pearl River Delta’s cities, while government R&D expenditure and education expenditure exerted negative effects. This paper concludes by highlighting the importance of cooperation between the government and enterprises in achieving green innovation.

Suggested Citation

  • Hongxu Guo & Zihan Xie & Rong Wu, 2021. "Evaluating Green Innovation Efficiency and Its Socioeconomic Factors Using a Slack-Based Measure with Environmental Undesirable Outputs," IJERPH, MDPI, vol. 18(24), pages 1-20, December.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:12880-:d:696616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/24/12880/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/24/12880/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    2. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    3. Kortelainen, Mika, 2008. "Dynamic environmental performance analysis: A Malmquist index approach," Ecological Economics, Elsevier, vol. 64(4), pages 701-715, February.
    4. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    5. Elzen, Michel den & Fekete, Hanna & Höhne, Niklas & Admiraal, Annemiek & Forsell, Nicklas & Hof, Andries F. & Olivier, Jos G.J. & Roelfsema, Mark & van Soest, Heleen, 2016. "Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?," Energy Policy, Elsevier, vol. 89(C), pages 224-236.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Toru Hattori, 2003. "Relative Performance of U.S. and Japanese Electricity Distribution: An Application of Stochastic Frontier Analysis," Journal of Productivity Analysis, Springer, vol. 19(1), pages 115-115, January.
    8. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    9. Rene Van Berkel, 2007. "Eco-Innovation: opportunities for advancing waste prevention," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 7(5/6), pages 527-550.
    10. Ming Yi & Yiqian Wang & Modan Yan & Lina Fu & Yao Zhang, 2020. "Government R&D Subsidies, Environmental Regulations, and Their Effect on Green Innovation Efficiency of Manufacturing Industry: Evidence from the Yangtze River Economic Belt of China," IJERPH, MDPI, vol. 17(4), pages 1-17, February.
    11. Mohr, Robert D., 2002. "Technical Change, External Economies, and the Porter Hypothesis," Journal of Environmental Economics and Management, Elsevier, vol. 43(1), pages 158-168, January.
    12. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    13. Cuesta, Rafael A. & Lovell, C.A. Knox & Zofío, José L., 2009. "Environmental efficiency measurement with translog distance functions: A parametric approach," Ecological Economics, Elsevier, vol. 68(8-9), pages 2232-2242, June.
    14. Zhonghua Cheng & Wenwen Li, 2018. "Independent R and D, Technology Introduction, and Green Growth in China’s Manufacturing," Sustainability, MDPI, vol. 10(2), pages 1-14, January.
    15. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    16. Lin, Boqiang & Du, Kerui, 2013. "Technology gap and China's regional energy efficiency: A parametric metafrontier approach," Energy Economics, Elsevier, vol. 40(C), pages 529-536.
    17. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.
    18. Dong, Feng & Li, Xiaohui & Long, Ruyin & Liu, Xiaoyan, 2013. "Regional carbon emission performance in China according to a stochastic frontier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 525-530.
    19. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    20. Hashimoto, Akihiro & Haneda, Shoko, 2008. "Measuring the change in R&D efficiency of the Japanese pharmaceutical industry," Research Policy, Elsevier, vol. 37(10), pages 1829-1836, December.
    21. Adam B. Jaffe et al., 1995. "Environmental Regulation and the Competitiveness of U.S. Manufacturing: What Does the Evidence Tell Us?," Journal of Economic Literature, American Economic Association, vol. 33(1), pages 132-163, March.
    22. Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
    23. Taher Osman & Prasanna Divigalpitiya & Takafumi Arima, 2016. "Driving factors of urban sprawl in Giza governorate of the Greater Cairo Metropolitan Region using a logistic regression model," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 20(2), pages 206-225, July.
    24. Yu-Shan Chen & Shyh-Bao Lai & Chao-Tung Wen, 2006. "The Influence of Green Innovation Performance on Corporate Advantage in Taiwan," Journal of Business Ethics, Springer, vol. 67(4), pages 331-339, September.
    25. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    26. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    27. Wang, Shaojian & Wang, Jieyu & Fang, Chuanglin & Feng, Kuishuang, 2019. "Inequalities in carbon intensity in China: A multi-scalar and multi-mechanism analysis," Applied Energy, Elsevier, vol. 254(C).
    28. Honma, Satoshi & Hu, Jin-Li, 2014. "Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis," Applied Energy, Elsevier, vol. 119(C), pages 67-78.
    29. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    30. Wang, Shaojian & Zeng, Jingyuan & Huang, Yongyuan & Shi, Chenyi & Zhan, Peiyu, 2018. "The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis," Applied Energy, Elsevier, vol. 228(C), pages 1693-1706.
    31. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    32. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    33. Huang, Junbing & Du, Dan & Hao, Yu, 2017. "The driving forces of the change in China's energy intensity: An empirical research using DEA-Malmquist and spatial panel estimations," Economic Modelling, Elsevier, vol. 65(C), pages 41-50.
    34. Yao, Xin & Zhou, Hongchen & Zhang, Aizhen & Li, Aijun, 2015. "Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis," Energy Policy, Elsevier, vol. 84(C), pages 142-154.
    35. Kneller, Richard & Manderson, Edward, 2012. "Environmental regulations and innovation activity in UK manufacturing industries," Resource and Energy Economics, Elsevier, vol. 34(2), pages 211-235.
    36. Vanessa Oltra & Maïder Saint Jean, 2009. "Sectoral systems of environmental innovation: an application to the French automotive industry," Post-Print hal-00274413, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Boqiang & Xie, Yongjing, 2022. "Analysis on operational efficiency and its influencing factors of China’s nuclear power plants," Energy, Elsevier, vol. 261(PA).
    2. Xiaonan Fan & Sainan Ren & Yang Liu, 2023. "The Driving Factors of Green Technology Innovation Efficiency—A Study Based on the Dynamic QCA Method," Sustainability, MDPI, vol. 15(12), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    2. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    3. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    4. Liu, Xiaohong & Yang, Jiangjiang & Xu, Chengzhen & Li, Xingchen & Zhu, Qingyuan, 2023. "Environmental regulation efficiency analysis by considering regional heterogeneity," Resources Policy, Elsevier, vol. 83(C).
    5. Lin, Boqiang & Sai, Rockson, 2022. "Has mining agglomeration affected energy productivity in Africa?," Energy, Elsevier, vol. 244(PA).
    6. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    7. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    8. Otsuka, Akihiro, 2023. "Industrial electricity consumption efficiency and energy policy in Japan," Utilities Policy, Elsevier, vol. 81(C).
    9. Chao-Qun Ma & Jiang-Long Liu & Yi-Shuai Ren & Yong Jiang, 2019. "The Impact of Economic Growth, FDI and Energy Intensity on China’s Manufacturing Industry’s CO 2 Emissions: An Empirical Study Based on the Fixed-Effect Panel Quantile Regression Model," Energies, MDPI, vol. 12(24), pages 1-16, December.
    10. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    11. Liu, Qianqian & Wang, Shaojian & Zhang, Wenzhong & Li, Jiaming & Kong, Yunlong, 2019. "Examining the effects of income inequality on CO2 emissions: Evidence from non-spatial and spatial perspectives," Applied Energy, Elsevier, vol. 236(C), pages 163-171.
    12. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    13. Lingming Chen & Congjia Huo, 2021. "Impact of Green Innovation Efficiency on Carbon Emission Reduction in the Guangdong-Hong Kong-Macao GBA," Sustainability, MDPI, vol. 13(23), pages 1-22, December.
    14. Ying Li & Yung-Ho Chiu & Liang Chun Lu, 2018. "Regional Energy, CO 2 , and Economic and Air Quality Index Performances in China: A Meta-Frontier Approach," Energies, MDPI, vol. 11(8), pages 1-20, August.
    15. Wang, Shaojian & Wang, Jieyu & Fang, Chuanglin & Feng, Kuishuang, 2019. "Inequalities in carbon intensity in China: A multi-scalar and multi-mechanism analysis," Applied Energy, Elsevier, vol. 254(C).
    16. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    17. Song, Weize & Zhang, Xiaoling & An, Kangxin & Yang, Tao & Li, Heng & Wang, Can, 2021. "Quantifying the spillover elasticities of urban built environment configurations on the adjacent traffic CO2 emissions in mainland China," Applied Energy, Elsevier, vol. 283(C).
    18. Xu, Mengmeng & Lin, Boqiang, 2022. "Energy efficiency gains from distortion mitigation: A perspective on the metallurgical industry," Resources Policy, Elsevier, vol. 77(C).
    19. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    20. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:12880-:d:696616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.