IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v112y2013icp1222-1232.html
   My bibliography  Save this item

Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  2. Zhang, P. & Xiao, X. & Meng, Z.N. & Li, M., 2015. "Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement," Applied Energy, Elsevier, vol. 137(C), pages 758-772.
  3. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
  4. Duan, Juan, 2021. "The PCM-porous system used to cool the inclined PV panel," Renewable Energy, Elsevier, vol. 180(C), pages 1315-1332.
  5. Manuel Cánovas & Iván Alhama & Gonzalo García & Emilio Trigueros & Francisco Alhama, 2017. "Numerical Simulation of Density-Driven Flow and Heat Transport Processes in Porous Media Using the Network Method," Energies, MDPI, vol. 10(9), pages 1-15, September.
  6. Ge, Ruihuan & Li, Qi & Li, Chuan & Liu, Qing, 2022. "Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 187(C), pages 829-843.
  7. Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
  8. Zhao, Dongliang & Tan, Gang, 2015. "Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application," Applied Energy, Elsevier, vol. 138(C), pages 381-392.
  9. Feng, Guohui & Liu, Ming & Huang, Kailiang & Qiang, Xiaoqian & Chang, Qunpeng, 2019. "Development of a math module of shell and tube phase-change energy storage system used in TRNSYS," Energy, Elsevier, vol. 183(C), pages 428-436.
  10. Jourabian, Mahmoud & Darzi, A. Ali Rabienataj & Toghraie, Davood & Akbari, Omid ali, 2018. "Melting process in porous media around two hot cylinders: Numerical study using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 316-335.
  11. Yang, Xiaohu & Wei, Pan & Cui, Xin & Jin, Liwen & He, Ya-Ling, 2019. "Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 250(C), pages 1457-1467.
  12. Li, Xinyi & Ma, Ting & Liu, Jun & Zhang, Hao & Wang, Qiuwang, 2018. "Pore-scale investigation of gravity effects on phase change heat transfer characteristics using lattice Boltzmann method," Applied Energy, Elsevier, vol. 222(C), pages 92-103.
  13. Liu, Huaqiang & Ahmad, Shakeel & Shi, Yu & Zhao, Jiyun, 2021. "A parametric study of a hybrid battery thermal management system that couples PCM/copper foam composite with helical liquid channel cooling," Energy, Elsevier, vol. 231(C).
  14. Ying, Xuchen & Huang, Weijia & Liu, Wenhua & Liu, Guiliang & Li, Jun & Yang, Mo, 2022. "Asymmetric phenomenon of flow and heat transfer in charging process of thermal energy storage based on an entire domain model," Applied Energy, Elsevier, vol. 316(C).
  15. Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
  16. Sardari, Pouyan Talebizadeh & Giddings, Donald & Grant, David & Gillott, Mark & Walker, Gavin S., 2020. "Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit," Renewable Energy, Elsevier, vol. 148(C), pages 987-1001.
  17. Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
  18. Riahi, Soheila & Saman, Wasim Y. & Bruno, Frank & Belusko, Martin & Tay, N.H.S., 2017. "Impact of periodic flow reversal of heat transfer fluid on the melting and solidification processes in a latent heat shell and tube storage system," Applied Energy, Elsevier, vol. 191(C), pages 276-286.
  19. Mohammad Ghalambaz & S. A. M. Mehryan & Ahmad Hajjar & Mehdi A. Fteiti & Obai Younis & Pouyan Talebizadeh Sardari & Wahiba Yaïci, 2021. "Latent Heat Thermal Storage in Non-Uniform Metal Foam Filled with Nano-Enhanced Phase Change Material," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
  20. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Energy, Elsevier, vol. 126(C), pages 501-512.
  21. Caliano, Martina & Bianco, Nicola & Graditi, Giorgio & Mongibello, Luigi, 2019. "Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation," Applied Energy, Elsevier, vol. 256(C).
  22. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
  23. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Applied Energy, Elsevier, vol. 191(C), pages 22-34.
  24. Wang, Zhifeng & Wu, Jiani & Lei, Dongqiang & Liu, Hong & Li, Jinping & Wu, Zhiyong, 2020. "Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application," Applied Energy, Elsevier, vol. 261(C).
  25. Liu, Xianglei & Ni, Renzhong & Tian, Yang & Yao, Haichen & Xu, Qiao & Xuan, Yimin, 2023. "Environment-friendly efficient thermal energy storage paradigm based on sugarcane-derived eco-ceramics phase change composites: From material to device," Renewable Energy, Elsevier, vol. 217(C).
  26. Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
  27. Chen, Guijun & Su, Yunpeng & Jiang, Dongyue & Pan, Lujun & Li, Shuai, 2020. "An experimental and numerical investigation on a paraffin wax/graphene oxide/carbon nanotubes composite material for solar thermal storage applications," Applied Energy, Elsevier, vol. 264(C).
  28. Xue Chen & Xiaolei Li & Xinlin Xia & Chuang Sun & Rongqiang Liu, 2019. "Thermal Performance of a PCM-Based Thermal Energy Storage with Metal Foam Enhancement," Energies, MDPI, vol. 12(17), pages 1-18, August.
  29. Yang, Jialin & Yang, Lijun & Xu, Chao & Du, Xiaoze, 2016. "Experimental study on enhancement of thermal energy storage with phase-change material," Applied Energy, Elsevier, vol. 169(C), pages 164-176.
  30. Zhang, Shuai & Li, Ying & Yan, Yuying, 2024. "Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: Energy, exergy, and economic analysis," Energy, Elsevier, vol. 286(C).
  31. Yang, Xiaohu & Feng, Shangsheng & Zhang, Qunli & Chai, Yue & Jin, Liwen & Lu, Tian Jian, 2017. "The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage," Applied Energy, Elsevier, vol. 194(C), pages 508-521.
  32. Ma, Zhesong & Wang, Yanhui & Wang, Shuxin & Yang, Yanan, 2016. "Ocean thermal energy harvesting with phase change material for underwater glider," Applied Energy, Elsevier, vol. 178(C), pages 557-566.
  33. Zheng, Zhang-Jing & Yang, Chao & Xu, Yang & Cai, Xiao, 2021. "Effect of metal foam with two-dimensional porosity gradient on melting behavior in a rectangular cavity," Renewable Energy, Elsevier, vol. 172(C), pages 802-815.
  34. Yang, Xiaohu & Wei, Pan & Wang, Xinyi & He, Ya-Ling, 2020. "Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam," Applied Energy, Elsevier, vol. 268(C).
  35. Tay, N.H.S. & Belusko, M. & Liu, M. & Bruno, F., 2015. "Investigation of the effect of dynamic melting in a tube-in-tank PCM system using a CFD model," Applied Energy, Elsevier, vol. 137(C), pages 738-747.
  36. Huang, Sheng & Lu, Jun & Li, Yongcai, 2022. "Numerical study on the influence of inclination angle on the melting behaviour of metal foam-PCM latent heat storage units," Energy, Elsevier, vol. 239(PE).
  37. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
  38. Yang, Qingyu & Yao, Hui & Yang, Yingying & Azaiez, Mejdi, 2024. "Effect of contact thermal resistance and skeleton thermodynamic properties on solid-liquid phase change heat transfer in porous media: A simulation study," Energy, Elsevier, vol. 300(C).
  39. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Diarce, Gonzalo & Taylor, Robert A., 2019. "An improved, generalized effective thermal conductivity method for rapid design of high temperature shell-and-tube latent heat thermal energy storage systems," Renewable Energy, Elsevier, vol. 132(C), pages 694-708.
  40. Wang, Hongfei & Wang, Fanxu & Li, Zongtao & Tang, Yong & Yu, Binhai & Yuan, Wei, 2016. "Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material," Applied Energy, Elsevier, vol. 176(C), pages 221-232.
  41. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  42. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
  43. Zhang, Shuai & Yan, Yuying, 2023. "Evaluation and optimisation of hybrid sensible-latent heat thermal energy storage unit with natural stones to enhance heat transfer," Renewable Energy, Elsevier, vol. 215(C).
  44. Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
  45. Jourabian, Mahmoud & Rabienataj Darzi, A. Ali & Akbari, Omid Ali & Toghraie, Davood, 2020. "The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
  46. Solé, Aran & Falcoz, Quentin & Cabeza, Luisa F. & Neveu, Pierre, 2018. "Geometry optimization of a heat storage system for concentrated solar power plants (CSP)," Renewable Energy, Elsevier, vol. 123(C), pages 227-235.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.