IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v108y2013icp82-91.html
   My bibliography  Save this item

Analyzing microcogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Najafi, Behzad & Haghighat Mamaghani, Alireza & Rinaldi, Fabio & Casalegno, Andrea, 2015. "Long-term performance analysis of an HT-PEM fuel cell based micro-CHP system: Operational strategies," Applied Energy, Elsevier, vol. 147(C), pages 582-592.
  2. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
  3. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
  4. Khadijeh Hooshyari & Bahman Amini Horri & Hamid Abdoli & Mohsen Fallah Vostakola & Parvaneh Kakavand & Parisa Salarizadeh, 2021. "A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells," Energies, MDPI, vol. 14(17), pages 1-38, September.
  5. Xia, Lingchao & Ni, Meng & Xu, Qidong & Xu, Haoran & Zheng, Keqing, 2021. "Optimization of catalyst layer thickness for achieving high performance and low cost of high temperature proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 294(C).
  6. Arsalis, Alexandros, 2019. "A comprehensive review of fuel cell-based micro-combined-heat-and-power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 391-414.
  7. Perna, Alessandra & Minutillo, Mariagiovanna & Jannelli, Elio, 2015. "Investigations on an advanced power system based on a high temperature polymer electrolyte membrane fuel cell and an organic Rankine cycle for heating and power production," Energy, Elsevier, vol. 88(C), pages 874-884.
  8. Fong, K.F. & Lee, C.K., 2015. "Performance analysis of internal-combustion-engine primed trigeneration systems for use in high-rise office buildings in Hong Kong," Applied Energy, Elsevier, vol. 160(C), pages 793-801.
  9. Raffaello Cozzolino, 2018. "Thermodynamic Performance Assessment of a Novel Micro-CCHP System Based on a Low Temperature PEMFC Power Unit and a Half-Effect Li/Br Absorption Chiller," Energies, MDPI, vol. 11(2), pages 1-21, February.
  10. Guida, D. & Minutillo, M., 2017. "Design methodology for a PEM fuel cell power system in a more electrical aircraft," Applied Energy, Elsevier, vol. 192(C), pages 446-456.
  11. Di Marcoberardino, G. & Chiarabaglio, L. & Manzolini, G. & Campanari, S., 2019. "A Techno-economic comparison of micro-cogeneration systems based on polymer electrolyte membrane fuel cell for residential applications," Applied Energy, Elsevier, vol. 239(C), pages 692-705.
  12. Hyun Sung Kang & Myong-Hwan Kim & Yoon Hyuk Shin, 2020. "Thermodynamic Modeling and Performance Analysis of a Combined Power Generation System Based on HT-PEMFC and ORC," Energies, MDPI, vol. 13(23), pages 1-18, November.
  13. Zhang, Caizhi & Liu, Zhitao & Zhang, Xiongwen & Chan, Siew Hwa & Wang, Youyi, 2016. "Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell – Modelling and fuzzy control of purging process," Energy, Elsevier, vol. 95(C), pages 425-432.
  14. Gao, Bin & Zhou, Yuekuan, 2024. "A co-simulation platform and climate-adaptive optimisation for cross-scale PEMFC combined heat and power supply in buildings with semi-empirical surrogate models," Applied Energy, Elsevier, vol. 375(C).
  15. Zhang, Xiaofeng & Liu, Wenjing & Pan, Jinjun & Zhao, Bin & Yi, Zhengyuan & He, Xu & Liu, Yuting & Li, Hongqiang, 2024. "Comprehensive performance assessment of a novel biomass-based CCHP system integrated with SOFC and HT-PEMFC," Energy, Elsevier, vol. 295(C).
  16. Bizon, Nicu, 2014. "Tracking the maximum efficiency point for the FC system based on extremum seeking scheme to control the air flow," Applied Energy, Elsevier, vol. 129(C), pages 147-157.
  17. Haghighat Mamaghani, Alireza & Najafi, Behzad & Casalegno, Andrea & Rinaldi, Fabio, 2017. "Predictive modelling and adaptive long-term performance optimization of an HT-PEM fuel cell based micro combined heat and power (CHP) plant," Applied Energy, Elsevier, vol. 192(C), pages 519-529.
  18. Lin, Rui & Zhu, Yike & Ni, Meng & Jiang, Zhenghua & Lou, Diming & Han, Lihang & Zhong, Di, 2019. "Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start," Applied Energy, Elsevier, vol. 241(C), pages 420-432.
  19. Facci, Andrea L. & Ubertini, Stefano, 2018. "Analysis of a fuel cell combined heat and power plant under realistic smart management scenarios," Applied Energy, Elsevier, vol. 216(C), pages 60-72.
  20. Jeon, Seung Won & Cha, Dowon & Kim, Hyung Soon & Kim, Yongchan, 2016. "Analysis of the system efficiency of an intermediate temperature proton exchange membrane fuel cell at elevated temperature and relative humidity conditions," Applied Energy, Elsevier, vol. 166(C), pages 165-173.
  21. Xia, Lingchao & Ni, Meng & He, Qijiao & Xu, Qidong & Cheng, Chun, 2021. "Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity," Applied Energy, Elsevier, vol. 300(C).
  22. Fan, Lixin & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Technological and Engineering design of a megawatt proton exchange membrane fuel cell system," Energy, Elsevier, vol. 257(C).
  23. Alimov, V.N. & Bobylev, I.V. & Busnyuk, A.O. & Kolgatin, S.N. & Peredistov, E.Yu. & Livshits, A.I., 2020. "Fuel processor with vanadium alloy membranes for converting CH4 into ultrapure hydrogen to generate electricity via fuel cell," Applied Energy, Elsevier, vol. 269(C).
  24. Loreti, Gabriele & Facci, Andrea L. & Baffo, Ilaria & Ubertini, Stefano, 2019. "Combined heat, cooling, and power systems based on half effect absorption chillers and polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 235(C), pages 747-760.
  25. Shan Dong & Yi Lin & Jiajun Hu & Chenglin Gu & Leilin Ding & Xinjian Zhang & Shi Jiang & Yu Guo, 2023. "Preparation of an Anodic Alumina-Supported Ni Catalyst and Development of a Catalytic Plate Reformer for the Steam Reforming of Methane," Energies, MDPI, vol. 16(8), pages 1-25, April.
  26. Deng, Shutong & Zhang, Jun & Zhang, Caizhi & Luo, Mengzhu & Ni, Meng & Li, Yu & Zeng, Tao, 2022. "Prediction and optimization of gas distribution quality for high-temperature PEMFC based on data-driven surrogate model," Applied Energy, Elsevier, vol. 327(C).
  27. Xing, Lei & Das, Prodip K. & Song, Xueguan & Mamlouk, Mohamed & Scott, Keith, 2015. "Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity," Applied Energy, Elsevier, vol. 138(C), pages 242-257.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.