IDEAS home Printed from https://ideas.repec.org/r/eee/agiwat/v67y2004i2p89-104.html
   My bibliography  Save this item

Wetting patterns and nitrogen distributions as affected by fertigation strategies from a surface point source

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Firouzabadi, Ali Ghadami & Baghani, Javad & Jovzi, Mehdi & Albaji, Mohammad, 2021. "Effects of wheat row spacing layout and drip tape spacing on yield and water productivity in sandy clay loam soil in a semi-arid region," Agricultural Water Management, Elsevier, vol. 251(C).
  2. Tang, Pan & Li, Hong & Issaka, Zakaria & Chen, Chao, 2018. "Effect of manifold layout and fertilizer solution concentration on fertilization and flushing times and uniformity of drip irrigation systems," Agricultural Water Management, Elsevier, vol. 200(C), pages 71-79.
  3. Al-Ogaidi, Ahmed A.M. & Wayayok, Aimrun & Rowshon, M.K. & Abdullah, Ahmed Fikri, 2016. "Wetting patterns estimation under drip irrigation systems using an enhanced empirical model," Agricultural Water Management, Elsevier, vol. 176(C), pages 203-213.
  4. Muhammad Zain & Zhuanyun Si & Sen Li & Yang Gao & Faisal Mehmood & Shafeeq-Ur Rahman & Abdoul Kader Mounkaila Hamani & Aiwang Duan, 2021. "The Coupled Effects of Irrigation Scheduling and Nitrogen Fertilization Mode on Growth, Yield and Water Use Efficiency in Drip-Irrigated Winter Wheat," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
  5. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
  6. Che, Zheng & Wang, Jun & Li, Jiusheng, 2021. "Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
  7. Guo, Yanhong & Wang, Zhen & Li, Jiusheng, 2023. "Coupling effects of phosphate fertilizer type and drip fertigation strategy on soil nutrient distribution, maize yield and nutrient uptake," Agricultural Water Management, Elsevier, vol. 290(C).
  8. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
  9. Al-Ogaidi, Ahmed A.M. & Wayayok, Aimrun & Rowshon, M.K. & Abdullah, Ahmad Fikri, 2017. "The influence of magnetized water on soil water dynamics under drip irrigation systems," Agricultural Water Management, Elsevier, vol. 180(PA), pages 70-77.
  10. Rahil, M.H. & Antonopoulos, V.Z., 2007. "Simulating soil water flow and nitrogen dynamics in a sunflower field irrigated with reclaimed wastewater," Agricultural Water Management, Elsevier, vol. 92(3), pages 142-150, September.
  11. Zhou, Lifeng & Feng, Hao & Zhao, Ying & Qi, Zhijuan & Zhang, Tibin & He, Jianqiang & Dyck, Miles, 2017. "Drip irrigation lateral spacing and mulching affects the wetting pattern, shoot-root regulation, and yield of maize in a sand-layered soil," Agricultural Water Management, Elsevier, vol. 184(C), pages 114-123.
  12. Yang, Kaijing & Wang, Fengxin & Shock, Clinton C. & Kang, Shaozhong & Huo, Zailin & Song, Na & Ma, Dan, 2017. "Potato performance as influenced by the proportion of wetted soil volume and nitrogen under drip irrigation with plastic mulch," Agricultural Water Management, Elsevier, vol. 179(C), pages 260-270.
  13. Meng, Wenjie & Xing, Jinliang & Niu, Mu & Zuo, Qiang & Wu, Xun & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Optimizing fertigation schemes based on root distribution," Agricultural Water Management, Elsevier, vol. 275(C).
  14. Patel, Neelam & Rajput, T.B.S., 2008. "Dynamics and modeling of soil water under subsurface drip irrigated onion," Agricultural Water Management, Elsevier, vol. 95(12), pages 1335-1349, December.
  15. Chen, Shuaihong & Zhang, Shaowu & Li, Hui & Hu, Tiantian & Sun, Guangzhao & Cui, Xiaolu & Liu, Jie, 2024. "Optimizing irrigation and nitrogen management improves soil soluble nitrogen pools and reduces nitrate residues in a drip-fertigated apple orchard on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 295(C).
  16. Głąb, Tomasz & Szewczyk, Wojciech & Gondek, Krzysztof & Mierzwa-Hersztek, Monika & Palmowska, Joanna & Nęcka, Krzysztof, 2020. "Optimization of turfgrass fertigation rate and frequency," Agricultural Water Management, Elsevier, vol. 234(C).
  17. Zahra Jafari & Sayed Hamid Matinkhah & Mohammad Reza Mosaddeghi, 2022. "Wetting Patterns in a Subsurface Irrigation System Using Reservoirs of Different Permeabilities: Experimental and HYDRUS-2D/3D Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5335-5352, November.
  18. He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.
  19. Ravikumar, V. & Vijayakumar, G. & Simunek, J. & Chellamuthu, S. & Santhi, R. & Appavu, K., 2011. "Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1431-1440, July.
  20. Barakat, Mohammad & Cheviron, Bruno & Angulo-Jaramillo, Rafael, 2016. "Influence of the irrigation technique and strategies on the nitrogen cycle and budget: A review," Agricultural Water Management, Elsevier, vol. 178(C), pages 225-238.
  21. Kumar, Mukesh & Rajput, T.B.S. & Kumar, Rohitashw & Patel, Neelam, 2016. "Water and nitrate dynamics in baby corn (Zea mays L.) under different fertigation frequencies and operating pressures in semi-arid region of India," Agricultural Water Management, Elsevier, vol. 163(C), pages 263-274.
  22. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
  23. Azad, Nasrin & Behmanesh, Javad & Rezaverdinejad, Vahid & Abbasi, Fariborz & Navabian, Maryam, 2018. "Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements," Agricultural Water Management, Elsevier, vol. 208(C), pages 344-356.
  24. Yunquan Zhang & Peiling Yang, 2023. "A Simulation-Based Optimization Model for Control of Soil Salinization in the Hetao Irrigation District, Northwest China," Sustainability, MDPI, vol. 15(5), pages 1-20, March.
  25. Farneselli, Michela & Benincasa, Paolo & Tosti, Giacomo & Simonne, Eric & Guiducci, Marcello & Tei, Francesco, 2015. "High fertigation frequency improves nitrogen uptake and crop performance in processing tomato grown with high nitrogen and water supply," Agricultural Water Management, Elsevier, vol. 154(C), pages 52-58.
  26. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.