IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v180y2017ipap70-77.html
   My bibliography  Save this article

The influence of magnetized water on soil water dynamics under drip irrigation systems

Author

Listed:
  • Al-Ogaidi, Ahmed A.M.
  • Wayayok, Aimrun
  • Rowshon, M.K.
  • Abdullah, Ahmad Fikri

Abstract

Soil water dynamics under drip irrigation systems are of considerable importance in designing, managing and operating these systems. Emitter discharge, soil type, soil chemical properties, crop water-requirements, and quality of applied water are the main factors affecting soil water dynamics under drip irrigation. In this study, laboratory experiments were conducted to study the effect of magnetized water on wetting pattern dimensions and water content distributions under surface emitter. Passing water through permanent or electro magnets installed on feeding pipeline resulted in producing magnetized water. Two emitter discharges (3 and 4.5l/h, in average), two soil types (sand and clay), two soil profiles (homogeneous and layered-textural) and two water types (plain and magnetized water) were considered in the experiments. It was found that using magnetized water led to increase surface wetted radius by 6.2% and decrease vertical wetted depth by 6.3% in homogeneous soil profiles. In layered-textural soil profiles, the surface wetted radius slightly decreased by 1.8% while the vertical wetted depth increased by 7.0% in case of sand over clay and decreased by 2.0% in case of clay over sand when using magnetized water. As a result of using magnetized water, the total wetted area decreased for homogeneous profiles and increased for layered-textural profiles. It was concluded that the impact of magnetized water is statistically significant on wetted bulb dimensions and not statistically significant on water content distributions. The results revealed that using magnetized water is recommended especially in homogeneous soil profiles.

Suggested Citation

  • Al-Ogaidi, Ahmed A.M. & Wayayok, Aimrun & Rowshon, M.K. & Abdullah, Ahmad Fikri, 2017. "The influence of magnetized water on soil water dynamics under drip irrigation systems," Agricultural Water Management, Elsevier, vol. 180(PA), pages 70-77.
  • Handle: RePEc:eee:agiwat:v:180:y:2017:i:pa:p:70-77
    DOI: 10.1016/j.agwat.2016.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416304188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Ogaidi, Ahmed A.M. & Wayayok, Aimrun & Rowshon, M.K. & Abdullah, Ahmed Fikri, 2016. "Wetting patterns estimation under drip irrigation systems using an enhanced empirical model," Agricultural Water Management, Elsevier, vol. 176(C), pages 203-213.
    2. U., Surendran & O., Sandeep & E.J., Joseph, 2016. "The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics," Agricultural Water Management, Elsevier, vol. 178(C), pages 21-29.
    3. Li, Jiusheng & Zhang, Jianjun & Rao, Minjie, 2004. "Wetting patterns and nitrogen distributions as affected by fertigation strategies from a surface point source," Agricultural Water Management, Elsevier, vol. 67(2), pages 89-104, June.
    4. Maheshwari, Basant L. & Grewal, Harsharn Singh, 2009. "Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity," Agricultural Water Management, Elsevier, vol. 96(8), pages 1229-1236, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Guoqing & Mu, Yan & Wang, Yanhui & Wang, Li, 2022. "Magnetization and oxidation of irrigation water to improve winter wheat (Triticum aestivum L.) production and water-use efficiency," Agricultural Water Management, Elsevier, vol. 259(C).
    2. Kaili Shi & Lili Zhangzhong & Furong Han & Shirui Zhang & Rui Guo & Xueying Yao, 2023. "Reducing Emitter Clogging in Drip Fertigation Systems by Magnetization Technology," Sustainability, MDPI, vol. 15(4), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Beibei & Liang, Chaofan & Chen, Xiaopeng & Ye, Sitan & Peng, Yao & Yang, Lu & Duan, Manli & Wang, Xingpeng, 2022. "Magnetically-treated brackish water affects soil water-salt distribution and the growth of cotton with film mulch drip irrigation in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
    3. Zhou, Lifeng & Feng, Hao & Zhao, Ying & Qi, Zhijuan & Zhang, Tibin & He, Jianqiang & Dyck, Miles, 2017. "Drip irrigation lateral spacing and mulching affects the wetting pattern, shoot-root regulation, and yield of maize in a sand-layered soil," Agricultural Water Management, Elsevier, vol. 184(C), pages 114-123.
    4. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    5. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Kilic, Murat, 2020. "A new analytical method for estimating the 3D volumetric wetting pattern under drip irrigation system," Agricultural Water Management, Elsevier, vol. 228(C).
    7. Muhammad Zain & Zhuanyun Si & Sen Li & Yang Gao & Faisal Mehmood & Shafeeq-Ur Rahman & Abdoul Kader Mounkaila Hamani & Aiwang Duan, 2021. "The Coupled Effects of Irrigation Scheduling and Nitrogen Fertilization Mode on Growth, Yield and Water Use Efficiency in Drip-Irrigated Winter Wheat," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    8. Kumar, Mukesh & Rajput, T.B.S. & Kumar, Rohitashw & Patel, Neelam, 2016. "Water and nitrate dynamics in baby corn (Zea mays L.) under different fertigation frequencies and operating pressures in semi-arid region of India," Agricultural Water Management, Elsevier, vol. 163(C), pages 263-274.
    9. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
    10. Firouzabadi, Ali Ghadami & Baghani, Javad & Jovzi, Mehdi & Albaji, Mohammad, 2021. "Effects of wheat row spacing layout and drip tape spacing on yield and water productivity in sandy clay loam soil in a semi-arid region," Agricultural Water Management, Elsevier, vol. 251(C).
    11. Kisi, Ozgur & Khosravinia, Payam & Heddam, Salim & Karimi, Bakhtiar & Karimi, Nazir, 2021. "Modeling wetting front redistribution of drip irrigation systems using a new machine learning method: Adaptive neuro- fuzzy system improved by hybrid particle swarm optimization – Gravity search algor," Agricultural Water Management, Elsevier, vol. 256(C).
    12. Al-Ogaidi, Ahmed A.M. & Wayayok, Aimrun & Rowshon, M.K. & Abdullah, Ahmed Fikri, 2016. "Wetting patterns estimation under drip irrigation systems using an enhanced empirical model," Agricultural Water Management, Elsevier, vol. 176(C), pages 203-213.
    13. Fu, Qiang & Hou, Renjie & Li, Tianxiao & Li, Yue & Liu, Dong & Li, Mo, 2019. "A new infiltration model for simulating soil water movement in canal irrigation under laboratory conditions," Agricultural Water Management, Elsevier, vol. 213(C), pages 433-444.
    14. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
    15. Baiamonte, Giorgio & Alagna, Vincenzo & Autovino, Dario & Iovino, Massimo & Palermo, Samuel & Vaccaro, Girolamo & Bagarello, Vincenzo, 2024. "Influence of soil hydraulic parameters on bulb size for surface and buried emitters," Agricultural Water Management, Elsevier, vol. 295(C).
    16. Ravikumar, V. & Vijayakumar, G. & Simunek, J. & Chellamuthu, S. & Santhi, R. & Appavu, K., 2011. "Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1431-1440, July.
    17. Zhao, Guoqing & Mu, Yan & Wang, Yanhui & Wang, Li, 2022. "Magnetization and oxidation of irrigation water to improve winter wheat (Triticum aestivum L.) production and water-use efficiency," Agricultural Water Management, Elsevier, vol. 259(C).
    18. Che, Zheng & Wang, Jun & Li, Jiusheng, 2021. "Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    19. Rahil, M.H. & Antonopoulos, V.Z., 2007. "Simulating soil water flow and nitrogen dynamics in a sunflower field irrigated with reclaimed wastewater," Agricultural Water Management, Elsevier, vol. 92(3), pages 142-150, September.
    20. He, Qinsi & Li, Sien & Kang, Shaozhong & Yang, Hanbo & Qin, Shujing, 2018. "Simulation of water balance in a maize field under film-mulching drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 252-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:180:y:2017:i:pa:p:70-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.