IDEAS home Printed from https://ideas.repec.org/r/cup/cbooks/9780521864015.html
   My bibliography  Save this item

Nonparametric Estimation under Shape Constraints

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Giguelay, J. & Huet, S., 2018. "Testing k-monotonicity of a discrete distribution. Application to the estimation of the number of classes in a population," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 96-115.
  2. Yoichi Arai & Taisuke Otsu & Mengshan Xu, 2022. "GLS under Monotone Heteroskedasticity," Papers 2210.13843, arXiv.org, revised Jan 2024.
  3. Taisuke Otsu & Mengshan Xu, 2019. "Score estimation of monotone partially linear index model," STICERD - Econometrics Paper Series 603, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  4. Hisatoshi Tanaka, 2021. "A Necessary Condition for Semiparametric Efficiency of Experimental Designs," Working Papers 2024, Waseda University, Faculty of Political Science and Economics.
  5. Ted Westling & Peter Gilbert & Marco Carone, 2020. "Causal isotonic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 719-747, July.
  6. Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
  7. Ryan Martin, 2019. "Empirical Priors and Posterior Concentration Rates for a Monotone Density," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 493-509, December.
  8. Xiaohong Chen & Yin Jia Jeff Qiu, 2016. "Methods for Nonparametric and Semiparametric Regressions with Endogeneity: A Gentle Guide," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 259-290, October.
  9. Xi Chen & Victor Chernozhukov & Iv'an Fern'andez-Val & Scott Kostyshak & Ye Luo, 2018. "Shape-Enforcing Operators for Point and Interval Estimators," Papers 1809.01038, arXiv.org, revised Feb 2021.
  10. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
  11. Mao, Lu, 2022. "Identification of the outcome distribution and sensitivity analysis under weak confounder–instrument interaction," Statistics & Probability Letters, Elsevier, vol. 189(C).
  12. Elina Robeva & Bernd Sturmfels & Ngoc Tran & Caroline Uhler, 2021. "Maximum likelihood estimation for totally positive log‐concave densities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 817-844, September.
  13. Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
  14. Pang Du & Christopher F. Parmeter & Jeffrey S. Racine, 2021. "Shape Constrained Kernel PDF and PMF Estimation," Department of Economics Working Papers 2021-05, McMaster University.
  15. Hendrik P. Lopuhaä & Eni Musta, 2017. "Smooth estimation of a monotone hazard and a monotone density under random censoring," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 58-82, January.
  16. Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  17. Piet Groeneboom & Geurt Jongbloed, 2024. "Confidence intervals in monotone regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(4), pages 1749-1781, December.
  18. Piet Groeneboom, 2021. "Grenander functionals and Cauchy's formula," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 275-294, March.
  19. Yao Luo & Yuanyuan Wan, 2018. "Integrated-Quantile-Based Estimation for First-Price Auction Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 173-180, January.
  20. Babii, Andrii & Kumar, Rohit, 2023. "Isotonic regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 234(2), pages 371-393.
  21. Xu, Mengshan & Otsu, Taisuke, 2020. "Score estimation of monotone partially linear index model," LSE Research Online Documents on Economics 106698, London School of Economics and Political Science, LSE Library.
  22. Sungwook Kim & Michael P. Fay & Michael A. Proschan, 2021. "Valid and approximately valid confidence intervals for current status data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 438-452, July.
  23. Ruixuan Liu & Zhengfei Yu, 2019. "Simple Semiparametric Estimation of Ordered Response Models: with an Application to the Interdependence Duration Models," Tsukuba Economics Working Papers 2019-004, Faculty of Humanities and Social Sciences, University of Tsukuba.
  24. Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689, arXiv.org, revised Sep 2021.
  25. Tommaso Lando, 2022. "Testing convexity of the generalised hazard function," Statistical Papers, Springer, vol. 63(4), pages 1271-1289, August.
  26. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
  27. Ruixuan Liu & Zhengfei Yu, 2019. "Accelerated Failure Time Models with Log-concave Errors," Tsukuba Economics Working Papers 2019-003, Faculty of Humanities and Social Sciences, University of Tsukuba.
  28. Dümbgen, Lutz & Mösching, Alexandre & Strähl, Christof, 2021. "Active set algorithms for estimating shape-constrained density ratios," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
  29. Dümbgen, Lutz & Wellner, Jon A. & Wolff, Malcolm, 2016. "A law of the iterated logarithm for Grenander’s estimator," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3854-3864.
  30. Jiaying Gu & Roger Koenker, 2018. "Nonparametric maximum likelihood methods for binary response models with random coefficients," Papers 1811.03329, arXiv.org, revised Jan 2020.
  31. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
  32. Quan Li & Xin Wang & Shuaiang Rong, 2018. "Probabilistic Load Flow Method Based on Modified Latin Hypercube-Important Sampling," Energies, MDPI, vol. 11(11), pages 1-14, November.
  33. Piet Groeneboom, 2021. "Estimation of the incubation time distribution for COVID‐19," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(2), pages 161-179, May.
  34. Mengshan Xu & Taisuke Otsu, 2022. "Isotonic propensity score matching," Papers 2207.08868, arXiv.org, revised Jan 2025.
  35. Alexander I. Jordan & Anja Mühlemann & Johanna F. Ziegel, 2022. "Characterizing the optimal solutions to the isotonic regression problem for identifiable functionals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 489-514, June.
  36. Jiaying Gu & Roger Koenker, 2018. "Nonparametric maximum likelihood methods for binary response models with random coefficients," CeMMAP working papers CWP65/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  37. Liu, Ruixuan & Yu, Zhengfei, 2022. "Sample selection models with monotone control functions," Journal of Econometrics, Elsevier, vol. 226(2), pages 321-342.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.