IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v48y2021i1p275-294.html
   My bibliography  Save this article

Grenander functionals and Cauchy's formula

Author

Listed:
  • Piet Groeneboom

Abstract

Let f^n be the nonparametric maximum likelihood estimator of a decreasing density. Grenander characterized this as the left‐continuous slope of the least concave majorant of the empirical distribution function. For a sample from the uniform distribution, the asymptotic distribution of the L2‐distance of the Grenander estimator to the uniform density was derived in an article by Groeneboom and Pyke by using a representation of the Grenander estimator in terms of conditioned Poisson and gamma random variables. This representation was also used in an article by Groeneboom and Lopuhaä to prove a central limit result of Sparre Andersen on the number of jumps of the Grenander estimator. Here we extend this to the proof of the main result on the L2‐distance of the Grenander estimator to the uniform density and also prove a similar asymptotic normality results for the entropy functional. Cauchy's formula and saddle point methods are the main tools in our development.

Suggested Citation

  • Piet Groeneboom, 2021. "Grenander functionals and Cauchy's formula," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 275-294, March.
  • Handle: RePEc:bla:scjsta:v:48:y:2021:i:1:p:275-294
    DOI: 10.1111/sjos.12449
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12449
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Groeneboom,Piet & Jongbloed,Geurt, 2014. "Nonparametric Estimation under Shape Constraints," Cambridge Books, Cambridge University Press, number 9780521864015, January.
    2. P. Groeneboom & H. P. Lopuhaa, 1993. "Isotonic estimators of monotone densities and distribution functions: basic facts," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 47(3), pages 175-183, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Lu, 2022. "Identification of the outcome distribution and sensitivity analysis under weak confounder–instrument interaction," Statistics & Probability Letters, Elsevier, vol. 189(C).
    2. Ruixuan Liu & Zhengfei Yu, 2019. "Simple Semiparametric Estimation of Ordered Response Models: with an Application to the Interdependence Duration Models," Tsukuba Economics Working Papers 2019-004, Faculty of Humanities and Social Sciences, University of Tsukuba.
    3. Yoici Arai & Taisuke Otsu & Mengshan Xu, 2022. "GLS under monotone heteroskedasticity," STICERD - Econometrics Paper Series 625, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Babii, Andrii & Kumar, Rohit, 2023. "Isotonic regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 234(2), pages 371-393.
    5. Piet Groeneboom, 2021. "Estimation of the incubation time distribution for COVID‐19," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(2), pages 161-179, May.
    6. Elina Robeva & Bernd Sturmfels & Ngoc Tran & Caroline Uhler, 2021. "Maximum likelihood estimation for totally positive log‐concave densities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 817-844, September.
    7. Hendrik P. Lopuhaä & Eni Musta, 2017. "Smooth estimation of a monotone hazard and a monotone density under random censoring," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 58-82, January.
    8. Xu, Mengshan & Otsu, Taisuke, 2020. "Score estimation of monotone partially linear index model," LSE Research Online Documents on Economics 106698, London School of Economics and Political Science, LSE Library.
    9. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
    10. Giguelay, J. & Huet, S., 2018. "Testing k-monotonicity of a discrete distribution. Application to the estimation of the number of classes in a population," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 96-115.
    11. Taisuke Otsu & Mengshan Xu, 2019. "Score estimation of monotone partially linear index model," STICERD - Econometrics Paper Series 603, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Xi Chen & Victor Chernozhukov & Iv'an Fern'andez-Val & Scott Kostyshak & Ye Luo, 2018. "Shape-Enforcing Operators for Point and Interval Estimators," Papers 1809.01038, arXiv.org, revised Feb 2021.
    13. Sungwook Kim & Michael P. Fay & Michael A. Proschan, 2021. "Valid and approximately valid confidence intervals for current status data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 438-452, July.
    14. Quan Li & Xin Wang & Shuaiang Rong, 2018. "Probabilistic Load Flow Method Based on Modified Latin Hypercube-Important Sampling," Energies, MDPI, vol. 11(11), pages 1-14, November.
    15. Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
    16. Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
    17. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    18. Ruixuan Liu & Zhengfei Yu, 2019. "Accelerated Failure Time Models with Log-concave Errors," Tsukuba Economics Working Papers 2019-003, Faculty of Humanities and Social Sciences, University of Tsukuba.
    19. Hisatoshi Tanaka, 2021. "A Necessary Condition for Semiparametric Efficiency of Experimental Designs," Working Papers 2024, Waseda University, Faculty of Political Science and Economics.
    20. Tommaso Lando, 2022. "Testing convexity of the generalised hazard function," Statistical Papers, Springer, vol. 63(4), pages 1271-1289, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:48:y:2021:i:1:p:275-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.