IDEAS home Printed from https://ideas.repec.org/r/cpr/ceprdp/9892.html
   My bibliography  Save this item

Joint Confidence Sets for Structural Impulse Responses

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nikola Kutin & Zakaria Moussa & Thomas Vallée, 2018. "Factors behind the Freight Rates in the Liner Shipping Industry," Working Papers halshs-01828633, HAL.
  2. Atsushi Inoue & Lutz Kilian, 2020. "The Role of the Prior in Estimating VAR Models with Sign Restrictions," Working Papers 2030, Federal Reserve Bank of Dallas.
  3. Anna Staszewska-Bystrova & Peter Winker, 2014. "Measuring Forecast Uncertainty of Corporate Bond Spreads by Bonferroni-Type Prediction Bands," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(2), pages 89-104, June.
  4. Paul Beaudry & Fabrice Collard & Patrick Fève & Alain Guay & Franck Portier, 2022. "Dynamic Identification in VARs," Working Papers hal-03863451, HAL.
  5. Guerron-Quintana, Pablo & Inoue, Atsushi & Kilian, Lutz, 2017. "Impulse response matching estimators for DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 144-155.
  6. Neil Kellard & Denise Osborn & Jerry Coakley & Simone D. Grose & Gael M. Martin & Donald S. Poskitt, 2015. "Bias Correction of Persistence Measures in Fractionally Integrated Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 721-740, September.
  7. Konstantin A. Kholodilin & Aleksei Netsunajev, 2016. "Crimea and Punishment: The Impact of Sanctions on Russian and European Economies," Discussion Papers of DIW Berlin 1569, DIW Berlin, German Institute for Economic Research.
  8. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2018. "Calculating joint confidence bands for impulse response functions using highest density regions," Empirical Economics, Springer, vol. 55(4), pages 1389-1411, December.
  9. Jonas E. Arias & Juan F. Rubio-Ramirez & Daniel F. Waggoner, 2020. "Uniform Priors for Impulse Responses," Working Papers 22-30, Federal Reserve Bank of Philadelphia.
  10. Daniel Grabowski & Anna Staszewska-Bystrova & Peter Winker, 2020. "Skewness-adjusted bootstrap confidence intervals and confidence bands for impulse response functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 5-32, March.
  11. Inoue, Atsushi & Jordà , Òscar & Kuersteiner, Guido, 2023. "Significance Bands for Local Projections," CEPR Discussion Papers 18271, C.E.P.R. Discussion Papers.
  12. Atsushi Inoue & `Oscar Jord`a & Guido M. Kuersteiner, 2023. "Inference for Local Projections," Papers 2306.03073, arXiv.org, revised Aug 2024.
  13. Harrison, Andre & Reed, Robert R., 2023. "Gross capital inflows, the U.S. economy, and the response of the Federal Reserve," Journal of International Money and Finance, Elsevier, vol. 139(C).
  14. Blazsek, Szabolcs & Licht, Adrian, 2019. "Co-integration and common trends analysis with score-driven models : an application to the federal funds effective rate and US inflation rate," UC3M Working papers. Economics 28451, Universidad Carlos III de Madrid. Departamento de Economía.
  15. Inoue, Atsushi & Kilian, Lutz, 2022. "Joint Bayesian inference about impulse responses in VAR models," Journal of Econometrics, Elsevier, vol. 231(2), pages 457-476.
  16. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2020. "Constructing joint confidence bands for impulse response functions of VAR models – A review," Econometrics and Statistics, Elsevier, vol. 13(C), pages 69-83.
  17. Demetrescu, Matei & Salish, Nazarii, 2024. "(Structural) VAR models with ignored changes in mean and volatility," International Journal of Forecasting, Elsevier, vol. 40(2), pages 840-854.
  18. Montiel Olea, José Luis & Nesbit, James, 2021. "(Machine) learning parameter regions," Journal of Econometrics, Elsevier, vol. 222(1), pages 716-744.
  19. Hafner, Christian M. & Herwartz, Helmut & Wang, Shu, 2023. "Causal inference with (partially) independent shocks and structural signals on the global crude oil market," LIDAM Discussion Papers ISBA 2023004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  20. Inoue, Atsushi & Kilian, Lutz, 2020. "The uniform validity of impulse response inference in autoregressions," Journal of Econometrics, Elsevier, vol. 215(2), pages 450-472.
  21. Inoue, Atsushi & Jordà , Òscar & Kuersteiner, Guido, 2023. "Significance Bands for Local Projections," CEPR Discussion Papers 18271, C.E.P.R. Discussion Papers.
  22. Lynda Khalaf & Beatriz Peraza López, 2020. "Simultaneous Indirect Inference, Impulse Responses and ARMA Models," Econometrics, MDPI, vol. 8(2), pages 1-26, April.
  23. Carsten Trenkler & Enzo Weber, 2020. "Identifying shocks to business cycles with asynchronous propagation," Empirical Economics, Springer, vol. 58(4), pages 1815-1836, April.
  24. Paul Carrillo‐Maldonado, 2023. "Partial identification for growth regimes: The case of Latin American countries," Metroeconomica, Wiley Blackwell, vol. 74(3), pages 557-583, July.
  25. José Luis Montiel Olea & Mikkel Plagborg‐Møller, 2021. "Local Projection Inference Is Simpler and More Robust Than You Think," Econometrica, Econometric Society, vol. 89(4), pages 1789-1823, July.
  26. Endong Wang, 2024. "Structural counterfactual analysis in macroeconomics: theory and inference," Papers 2409.09577, arXiv.org.
  27. Bojaj, Martin M. & Muhadinovic, Milica & Bracanovic, Andrej & Mihailovic, Andrej & Radulovic, Mladen & Jolicic, Ivan & Milosevic, Igor & Milacic, Veselin, 2022. "Forecasting macroeconomic effects of stablecoin adoption: A Bayesian approach," Economic Modelling, Elsevier, vol. 109(C).
  28. Lenard Lieb & Stephan Smeekes, 2017. "Inference for Impulse Responses under Model Uncertainty," Papers 1709.09583, arXiv.org, revised Oct 2019.
  29. Bojaj, Martin M. & Djurovic, Gordana & Fabris, Nikola & Milovic, Nikola, 2023. "Top 1% and inequality connectedness in the EMU and WB," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 139-155.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.