IDEAS home Printed from https://ideas.repec.org/r/cor/louvco/2002020.html
   My bibliography  Save this item

A new class of multivariate skew densities, with application to GARCH models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
  2. Bauwens Luc & Storti Giuseppe, 2009. "A Component GARCH Model with Time Varying Weights," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-33, May.
  3. Isao Ishida, 2005. "Scanning Multivariate Conditional Densities with Probability Integral Transforms," CIRJE F-Series CIRJE-F-369, CIRJE, Faculty of Economics, University of Tokyo.
  4. Gianni Amisano & Roberto Casarin, 2008. "Particle Filters for Markov-Switching Stochastic-Correlation Models," Working Papers 0814, University of Brescia, Department of Economics.
  5. John Galbraith & Dongming Zhu, 2009. "Forecasting Expected Shortfall With A Generalized Asymmetric Student-T Distribution," Departmental Working Papers 2009-01, McGill University, Department of Economics.
  6. Lunina, Veronika, 2016. "Joint Modelling of Power Price, Temperature, and Hydrological Balance with a View towards Scenario Analysis," Working Papers 2016:30, Lund University, Department of Economics.
  7. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
  8. Balázs Égert & Evžen Kočenda, 2011. "Time-varying synchronization of European stock markets," Empirical Economics, Springer, vol. 40(2), pages 393-407, April.
  9. Roy van der Weide, 2004. "Wake me up before you GO-GARCH," Computing in Economics and Finance 2004 316, Society for Computational Economics.
  10. Green, Rikard & Larsson, Karl & Lunina, Veronika & Nilsson, Birger, 2018. "Cross-commodity news transmission and volatility spillovers in the German energy markets," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 231-243.
  11. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
  12. Eric Jondeau & Michael Rockinger, 2002. "Conditional Dependency of Financial Series: The Copula-GARCH Model," FAME Research Paper Series rp69, International Center for Financial Asset Management and Engineering.
  13. Riccardo Borgoni & Piero Quatto & Giorgio Somà & Daniela Bartolo, 2010. "A geostatistical approach to define guidelines for radon prone area identification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(2), pages 255-276, June.
  14. Choi, Pilsun & Nam, Kiseok, 2008. "Asymmetric and leptokurtic distribution for heteroscedastic asset returns: The SU-normal distribution," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 41-63, January.
  15. Kai-Li Wang & Mei-Ling Chen, 2007. "The dynamics in the spot, futures, and call options with basis asymmetries: an intraday analysis in a generalized multivariate GARCH-M MSKST framework," Review of Quantitative Finance and Accounting, Springer, vol. 29(4), pages 371-394, November.
  16. Garcia, René & Renault, Eric & Veredas, David, 2011. "Estimation of stable distributions by indirect inference," Journal of Econometrics, Elsevier, vol. 161(2), pages 325-337, April.
  17. Fantazzini , Dean, 2009. "Econometric Analysis of Financial Data in Risk Management," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 14(2), pages 100-127.
  18. Mencia, Javier F. & Sentana, Enrique, 2004. "Estimation and testing of dynamic models with generalised hyperbolic innovations," LSE Research Online Documents on Economics 24742, London School of Economics and Political Science, LSE Library.
  19. Pei Pei, 2010. "Backtesting Portfolio Value-at-Risk with Estimated Portfolio Weights," Caepr Working Papers 2010-010, Center for Applied Economics and Policy Research, Economics Department, Indiana University Bloomington.
  20. Jose T.A.S. Ferreira & Mark F.J. Steel, 2004. "Bayesian Multivariate Regression Analysis with a New Class of Skewed Distributions," Econometrics 0403001, University Library of Munich, Germany.
  21. Eric Jondeau & Michael Rockinger, 2005. "Conditional Asset Allocation under Non-Normality: How Costly is the Mean-Variance Criterion?," FAME Research Paper Series rp132, International Center for Financial Asset Management and Engineering.
  22. Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
  23. Boudt, Kris & Croux, Christophe, 2010. "Robust M-estimation of multivariate GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2459-2469, November.
  24. Luc, BAUWENS & Walid, BEN OMRANE & Erick, Rengifo, 2006. "Intra-Daily FX Optimal Portfolio Allocation," Discussion Papers (ECON - Département des Sciences Economiques) 2006005, Université catholique de Louvain, Département des Sciences Economiques.
  25. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
  26. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
  27. Lombardi, Marco J. & Veredas, David, 2009. "Indirect estimation of elliptical stable distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2309-2324, April.
  28. Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2008. "Dynamic Stock Market Interactions between the Canadian, Mexican, and the United States Markets: The NAFTA Experience," Working papers 2008-49, University of Connecticut, Department of Economics.
  29. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
  30. Pelagatti Matteo M, 2009. "Modelling Good and Bad Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-20, March.
  31. Philippe Lambert & Sébastien Laurent, 2008. "Testing Conditional Dynamics in Asymmetry. A Residual-Based Approach," Working Papers ECARES 2008_009, ULB -- Universite Libre de Bruxelles.
  32. Harvey, A. & Chakravarty, T., 2008. "Beta-t-(E)GARCH," Cambridge Working Papers in Economics 0840, Faculty of Economics, University of Cambridge.
  33. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
  34. Michal Kaut & Stein Wallace, 2011. "Shape-based scenario generation using copulas," Computational Management Science, Springer, vol. 8(1), pages 181-199, April.
  35. Lai, Jing-yi, 2012. "Shock-dependent conditional skewness in international aggregate stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 72-83.
  36. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
  37. Chen, Bin & Hong, Yongmiao, 2014. "A unified approach to validating univariate and multivariate conditional distribution models in time series," Journal of Econometrics, Elsevier, vol. 178(P1), pages 22-44.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.