IDEAS home Printed from https://ideas.repec.org/r/boc/bocoec/551.html
   My bibliography  Save this item

A New Look at the Two-Mode Problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Tian, Li-Jun & Huang, Hai-Jun, 2015. "Modeling the modal split and trip scheduling with commuters’ uncertainty expectation," European Journal of Operational Research, Elsevier, vol. 244(3), pages 815-822.
  2. Basso, Leonardo J. & Feres, Fernando & Silva, Hugo E., 2019. "The efficiency of bus rapid transit (BRT) systems: A dynamic congestion approach," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 47-71.
  3. Yoshida, Yuichiro, 2008. "Commuter arrivals and optimal service in mass transit: Does queuing behavior at transit stops matter?," Regional Science and Urban Economics, Elsevier, vol. 38(3), pages 228-251, May.
  4. Rapoport, Amnon & Stein, William E. & Mak, Vincent & Zwick, Rami & Seale, Darryl A., 2010. "Endogenous arrivals in batch queues with constant or variable capacity," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1166-1185, December.
  5. de Palma, André & Lindsey, Robin & Monchambert, Guillaume, 2017. "The economics of crowding in rail transit," Journal of Urban Economics, Elsevier, vol. 101(C), pages 106-122.
  6. Guo, Ren-Yong & Szeto, W.Y. & Long, Jiancheng, 2020. "Trial-and-error operation schemes for bimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 106-123.
  7. Bruno de Borger & Stef Proost, 2004. "Vertical and horizontal tax competition in the transport sector," Reflets et perspectives de la vie économique, De Boeck Université, vol. 0(4), pages 45-64.
  8. Kraus, Marvin, 2012. "Road pricing with optimal mass transit," Journal of Urban Economics, Elsevier, vol. 72(2), pages 81-86.
  9. Gonzales, Eric J. & Daganzo, Carlos F., 2012. "Morning commute with competing modes and distributed demand: User equilibrium, system optimum, and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1519-1534.
  10. van den Berg, Vincent A.C., 2013. "Serial private infrastructures," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 186-202.
  11. Ramos, Raúl & Silva, Hugo E., 2023. "Fare evasion in public transport: How does it affect the optimal design and pricing?," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
  12. Li, Zhi-Chun & Zhang, Liping, 2020. "The two-mode problem with bottleneck queuing and transit crowding: How should congestion be priced using tolls and fares?," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 46-76.
  13. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
  14. Geng, Kexin & Wang, Yacan & Cherchi, Elisabetta & Guarda, Pablo, 2023. "Commuter departure time choice behavior under congestion charge: Analysis based on cumulative prospect theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
  15. Luke Haywood & Martin Koning, 2012. "Avoir les coudes serrés dans le métro parisien : évaluation contingente du confort des déplacements," Revue d'économie industrielle, De Boeck Université, vol. 0(4), pages 111-144.
  16. André de Palma & Robin Lindsey & Guillaume Monchambert, 2017. "The Economics of Crowding in Public Transport," Post-Print hal-01203310, HAL.
  17. Tian, Qiong & Huang, Hai-Jun & Yang, Hai, 2007. "Equilibrium properties of the morning peak-period commuting in a many-to-one mass transit system," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 616-631, July.
  18. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
  19. Kutzbach, Mark J., 2009. "Motorization in developing countries: Causes, consequences, and effectiveness of policy options," Journal of Urban Economics, Elsevier, vol. 65(2), pages 154-166, March.
  20. Vincent van den Berg & Erik T. Verhoef, 2011. "Congesting Pricing in a Road and Rail Network with Heterogeneous Values of Time and Schedule Delay," Tinbergen Institute Discussion Papers 11-059/3, Tinbergen Institute, revised 24 May 2012.
  21. Gonzales, Eric J., 2015. "Coordinated pricing for cars and transit in cities with hypercongestion," Economics of Transportation, Elsevier, vol. 4(1), pages 64-81.
  22. Zhang, Fangni & Yang, Hai & Liu, Wei, 2014. "The Downs–Thomson Paradox with responsive transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 244-263.
  23. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
  24. You-Zhi Zeng & Bin Ran & Ning Zhang & Xiaobao Yang & Jia-Jun Shen & She-Jun Deng, 2018. "Optimal Pricing and Service for the Peak-Period Bus Commuting Inefficiency of Boarding Queuing Congestion," Sustainability, MDPI, vol. 10(10), pages 1-14, September.
  25. Takayama, Yuki & Kuwahara, Masao, 2016. "Scheduling preferences, parking competition, and bottleneck congestion: A model of trip timing and parking location choices by heterogeneous commuters," MPRA Paper 68938, University Library of Munich, Germany.
  26. Yang, Hai & Liu, Wei & Wang, Xiaolei & Zhang, Xiaoning, 2013. "On the morning commute problem with bottleneck congestion and parking space constraints," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 106-118.
  27. Hayakawa, Keiichiro & Chikaraishi, Makoto, 2023. "Modeling the impact of e-hailing services on regional public transit considering transit-dependent people," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 91-118.
  28. Guo, Ren-Yong & Szeto, W.Y., 2018. "Day-to-day modal choice with a Pareto improvement or zero-sum revenue scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 1-25.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.