IDEAS home Printed from https://ideas.repec.org/r/bla/jorssb/v77y2015i2p475-507.html
   My bibliography  Save this item

Multiple-change-point detection for high dimensional time series via sparsified binary segmentation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. V. Brault & C. Lévy-Leduc & A. Mathieu & A. Jullien, 2018. "Change-Point Estimation in the Multivariate Model Taking into Account the Dependence: Application to the Vegetative Development of Oilseed Rape," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 374-389, September.
  2. Zhou, Houlin & Zhu, Hanbing & Wang, Xuejun, 2024. "Change point detection via feedforward neural networks with theoretical guarantees," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
  3. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
  4. Anastasiou, Andreas & Cribben, Ivor & Fryzlewicz, Piotr, 2022. "Cross-covariance isolate detect: a new change-point method for estimating dynamic functional connectivity," LSE Research Online Documents on Economics 112148, London School of Economics and Political Science, LSE Library.
  5. Greeshma Balabhadra & El Mehdi Ainasse & Pawel Polak, 2023. "High-Frequency Volatility Estimation with Fast Multiple Change Points Detection," Papers 2303.10550, arXiv.org, revised Jun 2024.
  6. Cho, Haeran & Korkas, Karolos K., 2022. "High-dimensional GARCH process segmentation with an application to Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 23(C), pages 187-203.
  7. Shu, Lei & Chen, Yu & Zhang, Weiping & Wang, Xueqin, 2022. "Spatial rank-based high-dimensional change point detection via random integration," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
  8. S. O. Tickle & I. A. Eckley & P. Fearnhead, 2021. "A computationally efficient, high‐dimensional multiple changepoint procedure with application to global terrorism incidence," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1303-1325, October.
  9. Ahelegbey, Daniel Felix & Billio, Monica & Casarin, Roberto, 2024. "Modeling Turning Points in the Global Equity Market," Econometrics and Statistics, Elsevier, vol. 30(C), pages 60-75.
  10. Brault, Vincent & Ouadah, Sarah & Sansonnet, Laure & Lévy-Leduc, Céline, 2018. "Nonparametric multiple change-point estimation for analyzing large Hi-C data matrices," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 143-165.
  11. Otilia Boldea & Bettina Drepper & Zhuojiong Gan, 2020. "Change point estimation in panel data with time‐varying individual effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 712-727, September.
  12. Neil Hwang & Jiarui Xu & Shirshendu Chatterjee & Sharmodeep Bhattacharyya, 2022. "The Bethe Hessian and Information Theoretic Approaches for Online Change-Point Detection in Network Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 283-320, June.
  13. Pang, Tianxiao & Du, Lingjie & Chong, Terence Tai-Leung, 2021. "Estimating multiple breaks in nonstationary autoregressive models," Journal of Econometrics, Elsevier, vol. 221(1), pages 277-311.
  14. Steland, Ansgar, 2020. "Testing and estimating change-points in the covariance matrix of a high-dimensional time series," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
  15. Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2018. "Oracle Estimation of a Change Point in High-Dimensional Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1184-1194, July.
  16. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
  17. Li Cai & Lisha Li & Simin Huang & Liang Ma & Lijian Yang, 2020. "Oracally efficient estimation for dense functional data with holiday effects," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 282-306, March.
  18. Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.
  19. banerjee, soumya, 2016. "Forecasting Australian port throughput: Lessons and Pitfalls in the era of Big Data," OSF Preprints ewtcf, Center for Open Science.
  20. Qing Yang & Yu-Ning Li & Yi Zhang, 2020. "Change point detection for nonparametric regression under strongly mixing process," Statistical Papers, Springer, vol. 61(4), pages 1465-1506, August.
  21. Bin Liu & Cheng Zhou & Xinsheng Zhang & Yufeng Liu, 2020. "A unified data‐adaptive framework for high dimensional change point detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 933-963, September.
  22. Haiyan Yang & Hongqiang Liu & Zhongliang Zhou & An Xu, 2018. "A practical adaptive nonlinear tracking algorithm with range rate measurement," International Journal of Distributed Sensor Networks, , vol. 14(5), pages 15501477187, May.
  23. Oleksandr Gromenko & Piotr Kokoszka & Matthew Reimherr, 2017. "Detection of change in the spatiotemporal mean function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 29-50, January.
  24. Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023. "Time series analysis of COVID-19 infection curve: A change-point perspective," Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
  25. banerjee, soumya, 2016. "Forecasting Australian port throughput: Lessons and Pitfalls in the era of Big Data," OSF Preprints c3av2, Center for Open Science.
  26. Magda Monteiro & Marco Costa, 2023. "Change Point Detection by State Space Modeling of Long-Term Air Temperature Series in Europe," Stats, MDPI, vol. 6(1), pages 1-18, January.
  27. Simon Bussy & Mokhtar Z. Alaya & Anne‐Sophie Jannot & Agathe Guilloux, 2022. "Binacox: automatic cut‐point detection in high‐dimensional Cox model with applications in genetics," Biometrics, The International Biometric Society, vol. 78(4), pages 1414-1426, December.
  28. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
  29. Aaron Paul Lowther & Rebecca Killick & Idris Arthur Eckley, 2023. "Detecting changes in mixed‐sampling rate data sequences," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
  30. Mengjia Yu & Xiaohui Chen, 2021. "Finite sample change point inference and identification for high‐dimensional mean vectors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 247-270, April.
  31. Holger Dette & Dominik Wied, 2016. "Detecting relevant changes in time series models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 371-394, March.
  32. Cui, Junfeng & Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2023. "Change-point testing for parallel data sets with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
  33. Rice, Gregory & Zhang, Chi, 2022. "Consistency of binary segmentation for multiple change-point estimation with functional data," Statistics & Probability Letters, Elsevier, vol. 180(C).
  34. Liu, Bin & Zhang, Xinsheng & Liu, Yufeng, 2022. "High dimensional change point inference: Recent developments and extensions," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  35. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019. "Inference of Break-Points in High-Dimensional Time Series," IRTG 1792 Discussion Papers 2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  36. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
  37. Hajra Siddiqa & Sajid Ali & Ismail Shah, 2021. "Most recent changepoint detection in censored panel data," Computational Statistics, Springer, vol. 36(1), pages 515-540, March.
  38. Ivor Cribben & Yi Yu, 2017. "Estimating whole-brain dynamics by using spectral clustering," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 607-627, April.
  39. Aykroyd, Robert G. & Barber, Stuart & Miller, Luke R., 2016. "Classification of multiple time signals using localized frequency characteristics applied to industrial process monitoring," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 351-362.
  40. Holger Dette & Theresa Eckle & Mathias Vetter, 2020. "Multiscale change point detection for dependent data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1243-1274, December.
  41. Chen, Cathy Yi-hsuan & Okhrin, Yarema & Wang, Tengyao, 2022. "Monitoring network changes in social media," LSE Research Online Documents on Economics 113742, London School of Economics and Political Science, LSE Library.
  42. Ma, Chenchen & Tu, Yundong, 2023. "Group fused Lasso for large factor models with multiple structural breaks," Journal of Econometrics, Elsevier, vol. 233(1), pages 132-154.
  43. Ping‐Shou Zhong & Jun Li & Piotr Kokoszka, 2021. "Multivariate analysis of variance and change points estimation for high‐dimensional longitudinal data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 375-405, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.