IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v193y2024ics0167947323002244.html
   My bibliography  Save this article

Change point detection via feedforward neural networks with theoretical guarantees

Author

Listed:
  • Zhou, Houlin
  • Zhu, Hanbing
  • Wang, Xuejun

Abstract

This article mainly studies change point detection for mean shift change point model. An estimation method is proposed to estimate the change point via feedforward neural networks. The complete f-moment consistency of the proposed estimator is obtained. Numerical simulation results show that the performance of the proposed estimator is better than that of cumulative sum type estimator which is widely used in the change point detection, especially when the mean shift signal size is small. Finally, we demonstrate the proposed method by empirically analyzing a stock data set.

Suggested Citation

  • Zhou, Houlin & Zhu, Hanbing & Wang, Xuejun, 2024. "Change point detection via feedforward neural networks with theoretical guarantees," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:csdana:v:193:y:2024:i:c:s0167947323002244
    DOI: 10.1016/j.csda.2023.107913
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323002244
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nancy R. Zhang & David O. Siegmund & Hanlee Ji & Jun Z. Li, 2010. "Detecting simultaneous changepoints in multiple sequences," Biometrika, Biometrika Trust, vol. 97(3), pages 631-645.
    2. Mengjia Yu & Xiaohui Chen, 2021. "Finite sample change point inference and identification for high‐dimensional mean vectors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 247-270, April.
    3. Haeran Cho & Piotr Fryzlewicz, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 475-507, March.
    4. Lenzi, Amanda & Bessac, Julie & Rudi, Johann & Stein, Michael L., 2023. "Neural networks for parameter estimation in intractable models," Computational Statistics & Data Analysis, Elsevier, vol. 185(C).
    5. Tengyao Wang & Richard J. Samworth, 2018. "High dimensional change point estimation via sparse projection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 57-83, January.
    6. Kokoszka, Piotr & Leipus, Remigijus, 1998. "Change-point in the mean of dependent observations," Statistics & Probability Letters, Elsevier, vol. 40(4), pages 385-393, November.
    7. Yan Wang & Xuejun Wang, 2021. "Complete f-moment convergence for Sung’s type weighted sums and its application to the EV regression models," Statistical Papers, Springer, vol. 62(2), pages 769-793, April.
    8. Mao, Xiaojun & Peng, Liuhua & Wang, Zhonglei, 2022. "Nonparametric feature selection by random forests and deep neural networks," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    9. Hariz, Samir Ben & Wylie, Jonathan J., 2005. "Rates of convergence for the change-point estimator for long-range dependent sequences," Statistics & Probability Letters, Elsevier, vol. 73(2), pages 155-164, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Bin & Zhang, Xinsheng & Liu, Yufeng, 2022. "High dimensional change point inference: Recent developments and extensions," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Cui, Junfeng & Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2023. "Change-point testing for parallel data sets with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    3. Bin Liu & Cheng Zhou & Xinsheng Zhang & Yufeng Liu, 2020. "A unified data‐adaptive framework for high dimensional change point detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 933-963, September.
    4. Mengjia Yu & Xiaohui Chen, 2021. "Finite sample change point inference and identification for high‐dimensional mean vectors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 247-270, April.
    5. Chen, Cathy Yi-hsuan & Okhrin, Yarema & Wang, Tengyao, 2022. "Monitoring network changes in social media," LSE Research Online Documents on Economics 113742, London School of Economics and Political Science, LSE Library.
    6. Steland, Ansgar, 2020. "Testing and estimating change-points in the covariance matrix of a high-dimensional time series," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    7. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    8. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
    9. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019. "Inference of Break-Points in High-Dimensional Time Series," IRTG 1792 Discussion Papers 2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    10. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    11. Cho, Haeran & Korkas, Karolos K., 2022. "High-dimensional GARCH process segmentation with an application to Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 23(C), pages 187-203.
    12. Jiang, Feiyu & Wang, Runmin & Shao, Xiaofeng, 2023. "Robust inference for change points in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    13. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    14. Pang, Tianxiao & Du, Lingjie & Chong, Terence Tai-Leung, 2021. "Estimating multiple breaks in nonstationary autoregressive models," Journal of Econometrics, Elsevier, vol. 221(1), pages 277-311.
    15. Aaron Paul Lowther & Rebecca Killick & Idris Arthur Eckley, 2023. "Detecting changes in mixed‐sampling rate data sequences," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    16. Hajra Siddiqa & Sajid Ali & Ismail Shah, 2021. "Most recent changepoint detection in censored panel data," Computational Statistics, Springer, vol. 36(1), pages 515-540, March.
    17. Ping‐Shou Zhong & Jun Li & Piotr Kokoszka, 2021. "Multivariate analysis of variance and change points estimation for high‐dimensional longitudinal data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 375-405, June.
    18. Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.
    19. Bertille Follain & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional changepoint estimation with heterogeneous missingness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 1023-1055, July.
    20. Follain, Bertille & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional changepoint estimation with heterogeneous missingness," LSE Research Online Documents on Economics 115014, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:193:y:2024:i:c:s0167947323002244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.