IDEAS home Printed from https://ideas.repec.org/r/bla/jorssb/v72y2010i5p695-696.html
   My bibliography  Save this item

Corrigendum: A self‐normalized approach to confidence interval construction in time series

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Y. Boubacar Maïnassara & A. Ilmi Amir, 2024. "Portmanteau tests for periodic ARMA models with dependent errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 164-188, March.
  2. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
  3. Zhang, Xianyang & Shao, Xiaofeng, 2013. "On a general class of long run variance estimators," Economics Letters, Elsevier, vol. 120(3), pages 437-441.
  4. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
  5. Yeonwoo Rho & Xiaofeng Shao, 2015. "Inference for Time Series Regression Models With Weakly Dependent and Heteroscedastic Errors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 444-457, July.
  6. Fabrizio Iacone & Stephen J. Leybourne & A. M. Robert Taylor, 2014. "A FIXED- b TEST FOR A BREAK IN LEVEL AT AN UNKNOWN TIME UNDER FRACTIONAL INTEGRATION," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 40-54, January.
  7. Yi-Ting Chen & Zhongjun Qu, 2015. "M Tests with a New Normalization Matrix," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 617-652, May.
  8. Yannick Hoga, 2024. "Persistence-Robust Break Detection in Predictive Quantile and CoVaR Regressions," Papers 2410.05861, arXiv.org.
  9. Hong, Yongmiao & Linton, Oliver & McCabe, Brendan & Sun, Jiajing & Wang, Shouyang, 2024. "Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach," Journal of Econometrics, Elsevier, vol. 238(2).
  10. Chen, Willa W. & Deo, Rohit S., 2018. "Subsampling based inference for U statistics under thick tails using self-normalization," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 95-103.
  11. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
  12. Yinxiao Huang & Stanislav Volgushev & Xiaofeng Shao, 2015. "On Self-Normalization For Censored Dependent Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 109-124, January.
  13. Uribe, Jorge M. & Guillen, Montserrat & Mosquera-López, Stephania, 2018. "Uncovering the nonlinear predictive causality between natural gas and electricity prices," Energy Economics, Elsevier, vol. 74(C), pages 904-916.
  14. RMI staff article, 2016. "NUS-RMI Credit Research Initiative Technical Report Version: 2016 Update 1," Global Credit Review (GCR), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 49-132.
  15. Seong Yeon Chang & Pierre Perron, 2016. "Inference on a Structural Break in Trend with Fractionally Integrated Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 555-574, July.
  16. Xuexin Wang & Yixiao Sun, 2020. "An Asymptotic F Test for Uncorrelatedness in the Presence of Time Series Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 536-550, July.
  17. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
  18. Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023. "Time series analysis of COVID-19 infection curve: A change-point perspective," Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
  19. Xianyang Zhang & Bo Li & Xiaofeng Shao, 2014. "Self-normalization for Spatial Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 311-324, June.
  20. Kim, Seonjin & Zhao, Zhibiao & Shao, Xiaofeng, 2015. "Nonparametric functional central limit theorem for time series regression with application to self-normalized confidence interval," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 277-290.
  21. Zhang, Xianyang, 2016. "Fixed-smoothing asymptotics in the generalized empirical likelihood estimation framework," Journal of Econometrics, Elsevier, vol. 193(1), pages 123-146.
  22. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
  23. Bucher, Axel, 2013. "A note on weak convergence of the sequential multivariate empirical process under strong mixing," LIDAM Discussion Papers ISBA 2013028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  24. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
  25. Yannick Hoga & Christian Schulz, 2025. "Self-Normalized Inference in (Quantile, Expected Shortfall) Regressions for Time Series," Papers 2502.10065, arXiv.org.
  26. Zhang, Jingsi & Jiang, Wenxin & Shao, Xiaofeng, 2013. "Bayesian model selection based on parameter estimates from subsamples," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 979-986.
  27. Xianyang Zhang & Xiaofeng Shao, 2016. "On the coverage bound problem of empirical likelihood methods for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 395-421, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.