IDEAS home Printed from https://ideas.repec.org/r/bla/jorssa/v169y2006i3p571-584.html
   My bibliography  Save this item

A comparison of multiple imputation and doubly robust estimation for analyses with missing data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Iván Díaz & Nima S. Hejazi, 2020. "Causal mediation analysis for stochastic interventions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 661-683, July.
  2. James Y. Dai & Michael LeBlanc & Charles Kooperberg, 2009. "Semiparametric Estimation Exploiting Covariate Independence in Two-Phase Randomized Trials," Biometrics, The International Biometric Society, vol. 65(1), pages 178-187, March.
  3. Fayyaz Bahari & Safar Parsi & Mojtaba Ganjali, 2021. "Empirical likelihood inference in general linear model with missing values in response and covariates by MNAR mechanism," Statistical Papers, Springer, vol. 62(2), pages 591-622, April.
  4. Lingyun Lyu & Yu Cheng & Abdus S. Wahed, 2023. "Imputation‐based Q‐learning for optimizing dynamic treatment regimes with right‐censored survival outcome," Biometrics, The International Biometric Society, vol. 79(4), pages 3676-3689, December.
  5. Li, Daniel H. & Wang, Liqun, 2016. "A weighted simulation-based estimator for incomplete longitudinal data models," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 16-22.
  6. R Florez-Lopez, 2010. "Effects of missing data in credit risk scoring. A comparative analysis of methods to achieve robustness in the absence of sufficient data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 486-501, March.
  7. Gillian A. Lancaster, 2009. "Statistical issues in the assessment of health outcomes in children: a methodological review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(4), pages 707-727, October.
  8. Duo Qin & Sophie van Huellen & Raghda Elshafie & Yimeng Liu & Thanos Moraitis, 2019. "A Principled Approach to Assessing Missing-Wage Induced Selection Bias," Working Papers 216, Department of Economics, SOAS University of London, UK.
  9. Jianxuan Liu & Yanyuan Ma & Lan Wang, 2018. "An alternative robust estimator of average treatment effect in causal inference," Biometrics, The International Biometric Society, vol. 74(3), pages 910-923, September.
  10. Robert D. J. Anderson, 2008. "US Consumer Inflation Expectations: Evidence Regarding Learning, Accuracy and Demographics," Centre for Growth and Business Cycle Research Discussion Paper Series 99, Economics, The University of Manchester.
  11. Chenyang Gu & Roee Gutman, 2017. "Combining item response theory with multiple imputation to equate health assessment questionnaires," Biometrics, The International Biometric Society, vol. 73(3), pages 990-998, September.
  12. Ferrari, Pier Alda & Annoni, Paola & Barbiero, Alessandro & Manzi, Giancarlo, 2011. "An imputation method for categorical variables with application to nonlinear principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2410-2420, July.
  13. Y. T. Hwang & C. H. Huang & W. L. Yeh & Y. D. Shen, 2017. "The weighted general linear model for longitudinal medical cost data – an application in colorectal cancer," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(2), pages 288-307, January.
  14. Creemers, An & Aerts, Marc & Hens, Niel & Molenberghs, Geert, 2012. "A nonparametric approach to weighted estimating equations for regression analysis with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 100-113, January.
  15. Manuel Gomes & Nils Gutacker & Chris Bojke & Andrew Street, 2016. "Addressing Missing Data in Patient‐Reported Outcome Measures (PROMS): Implications for the Use of PROMS for Comparing Provider Performance," Health Economics, John Wiley & Sons, Ltd., vol. 25(5), pages 515-528, May.
  16. Beunckens, Caroline & Sotto, Cristina & Molenberghs, Geert, 2008. "A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1533-1548, January.
  17. Manuel Gomes & Nils Gutacker & Chris Bojke & Andrew Street, 2014. "Addressing missing data in patient-reported outcome measures (PROMs): implications for comparing provider performance," Working Papers 101cherp, Centre for Health Economics, University of York.
  18. Moodie Erica E. M. & Delaney Joseph A.C. & Lefebvre Geneviève & Platt Robert W, 2008. "Missing Confounding Data in Marginal Structural Models: A Comparison of Inverse Probability Weighting and Multiple Imputation," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-25, July.
  19. Huiming Lin & Bo Fu & Guoyou Qin & Zhongyi Zhu, 2017. "Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts," Biometrics, The International Biometric Society, vol. 73(4), pages 1132-1139, December.
  20. Ashkan Ertefaie & Nima S. Hejazi & Mark J. van der Laan, 2023. "Nonparametric inverse‐probability‐weighted estimators based on the highly adaptive lasso," Biometrics, The International Biometric Society, vol. 79(2), pages 1029-1041, June.
  21. Nguyen Nancy Duong & Zhang Li-Chun, 2020. "An Appraisal of Common Reweighting Methods for Nonresponse in Household Surveys Based on the Norwegian Labour Force Survey and the Statistics on Income and Living Conditions Survey," Journal of Official Statistics, Sciendo, vol. 36(1), pages 151-172, March.
  22. Rashid, S. & Mitra, R. & Steele, R.J., 2015. "Using mixtures of t densities to make inferences in the presence of missing data with a small number of multiply imputed data sets," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 84-96.
  23. Daniel, Rhian M. & Kenward, Michael G., 2012. "A method for increasing the robustness of multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1624-1643.
  24. Cheng, Hao, 2021. "Importance sampling imputation algorithms in quantile regression with their application in CGSS data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 498-508.
  25. Zhiwei Zhang & Zhen Chen & James F. Troendle & Jun Zhang, 2012. "Causal Inference on Quantiles with an Obstetric Application," Biometrics, The International Biometric Society, vol. 68(3), pages 697-706, September.
  26. Somosi, Agnes & Stiassny, Alfred & Kolos, Krisztina & Warlop, Luk, 2021. "Customer defection due to service elimination and post-elimination customer behavior: An empirical investigation in telecommunications," International Journal of Research in Marketing, Elsevier, vol. 38(4), pages 915-934.
  27. Regier Michael D. & Moodie Erica E. M., 2016. "The Orthogonally Partitioned EM Algorithm: Extending the EM Algorithm for Algorithmic Stability and Bias Correction Due to Imperfect Data," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 65-77, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.