IDEAS home Printed from https://ideas.repec.org/r/bla/jinfst/v62y2011i1p1-18.html
   My bibliography  Save this item

Using global mapping to create more accurate document-level maps of research fields

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Frank Havemann & Jochen Gläser & Michael Heinz, 2017. "Memetic search for overlapping topics based on a local evaluation of link communities," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1089-1118, May.
  2. Shuo Xu & Junwan Liu & Dongsheng Zhai & Xin An & Zheng Wang & Hongshen Pang, 2018. "Overlapping thematic structures extraction with mixed-membership stochastic blockmodel," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 61-84, October.
  3. Ryo Takahashi & Kenji Kaibe & Kazuyuki Suzuki & Sayaka Takahashi & Kotaro Takeda & Marc Hansen & Michiaki Yumoto, 2023. "New concept of the affinity between research fields using academic journal data in Scopus," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3507-3534, June.
  4. Yan, Erjia & Ding, Ying & Cronin, Blaise & Leydesdorff, Loet, 2013. "A bird's-eye view of scientific trading: Dependency relations among fields of science," Journal of Informetrics, Elsevier, vol. 7(2), pages 249-264.
  5. Matthias Held & Grit Laudel & Jochen Gläser, 2021. "Challenges to the validity of topic reconstruction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4511-4536, May.
  6. Katalin Orosz & Illés J. Farkas & Péter Pollner, 2016. "Quantifying the changing role of past publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 829-853, August.
  7. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
  8. Keungoui Kim & Dieter F. Kogler & Sira Maliphol, 2024. "Identifying interdisciplinary emergence in the science of science: combination of network analysis and BERTopic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
  9. Chaomei Chen & Min Song, 2019. "Visualizing a field of research: A methodology of systematic scientometric reviews," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-25, October.
  10. Yan, Erjia, 2014. "Research dynamics: Measuring the continuity and popularity of research topics," Journal of Informetrics, Elsevier, vol. 8(1), pages 98-110.
  11. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
  12. Rons, Nadine, 2018. "Bibliometric approximation of a scientific specialty by combining key sources, title words, authors and references," Journal of Informetrics, Elsevier, vol. 12(1), pages 113-132.
  13. Yu-Wei Chang, 2018. "Examining interdisciplinarity of library and information science (LIS) based on LIS articles contributed by non-LIS authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1589-1613, September.
  14. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
  15. Edwin Horlings & Thomas Gurney, 2013. "Search strategies along the academic lifecycle," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1137-1160, March.
  16. Kevin W. Boyack, 2017. "Investigating the effect of global data on topic detection," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 999-1015, May.
  17. Loet Leydesdorff, 2013. "Statistics for the dynamic analysis of scientometric data: the evolution of the sciences in terms of trajectories and regimes," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 731-741, September.
  18. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
  19. Yang, Siluo & Wang, Feifei, 2015. "Visualizing information science: Author direct citation analysis in China and around the world," Journal of Informetrics, Elsevier, vol. 9(1), pages 208-225.
  20. Kevin W Boyack & Mei-Ching Chen & George Chacko, 2014. "Characterization of the Peer Review Network at the Center for Scientific Review, National Institutes of Health," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-13, August.
  21. Ricardo Arencibia-Jorge & Rosa Lidia Vega-Almeida & José Luis Jiménez-Andrade & Humberto Carrillo-Calvet, 2022. "Evolutionary stages and multidisciplinary nature of artificial intelligence research," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5139-5158, September.
  22. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
  23. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2020. "Measuring researchers’ potential scholarly impact with structural variations: Four types of researchers in information science (1979–2018)," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-26, June.
  24. Yan, Erjia & Ding, Ying & Milojević, Staša & Sugimoto, Cassidy R., 2012. "Topics in dynamic research communities: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 6(1), pages 140-153.
  25. Jochen Gläser & Wolfgang Glänzel & Andrea Scharnhorst, 2017. "Same data—different results? Towards a comparative approach to the identification of thematic structures in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 981-998, May.
  26. Carlos G. Figuerola & Francisco Javier García Marco & María Pinto, 2017. "Mapping the evolution of library and information science (1978–2014) using topic modeling on LISA," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1507-1535, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.