IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v108y2016i2d10.1007_s11192-016-1971-9.html
   My bibliography  Save this article

Quantifying the changing role of past publications

Author

Listed:
  • Katalin Orosz

    (Eötvös Loránd University)

  • Illés J. Farkas

    (Hungarian Academy of Sciences)

  • Péter Pollner

    (Hungarian Academy of Sciences)

Abstract

Our current societies increasingly rely on electronic repositories of collective knowledge. An archetype of these databases is the Web of Science (WoS) that stores scientific publications. In contrast to several other forms of knowledge—e.g., Wikipedia articles—a scientific paper does not change after its “birth”. Nonetheless, from the moment a paper is published it exists within the evolving web of other papers, thus, its actual meaning to the reader changes. To track how scientific ideas (represented by groups of scientific papers) appear and evolve, we apply a novel combination of algorithms explicitly allowing for papers to change their groups. We (1) identify the overlapping clusters of the undirected yearly co-citation networks of the WoS (1975–2008) and (2) match these yearly clusters (groups) to form group timelines. After visualizing the longest lived groups of the entire data set we assign topic labels to all groups. We find that in the entire WoS multidisciplinarity is clearly over-represented among cutting edge ideas. In addition, we provide detailed examples for papers that (1) change their topic labels and (2) move between groups.

Suggested Citation

  • Katalin Orosz & Illés J. Farkas & Péter Pollner, 2016. "Quantifying the changing role of past publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 829-853, August.
  • Handle: RePEc:spr:scient:v:108:y:2016:i:2:d:10.1007_s11192-016-1971-9
    DOI: 10.1007/s11192-016-1971-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-016-1971-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-016-1971-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedro Albarrán & Juan A. Crespo & Ignacio Ortuño & Javier Ruiz-Castillo, 2011. "The skewness of science in 219 sub-fields and a number of aggregates," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 385-397, August.
    2. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    3. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    4. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    5. Chaomei Chen & Fidelia Ibekwe-SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    6. Richard Klavans & Kevin W. Boyack, 2011. "Using global mapping to create more accurate document‐level maps of research fields," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(1), pages 1-18, January.
    7. Richard Klavans & Kevin W. Boyack, 2011. "Using global mapping to create more accurate document-level maps of research fields," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(1), pages 1-18, January.
    8. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    9. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    10. Alan L. Porter & Ismael Rafols, 2009. "Is science becoming more interdisciplinary? Measuring and mapping six research fields over time," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 719-745, December.
    11. Howard D. White & Belver C. Griffith, 1981. "Author cocitation: A literature measure of intellectual structure," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 32(3), pages 163-171, May.
    12. González, M.C. & Herrmann, H.J. & Kertész, J. & Vicsek, T., 2007. "Community structure and ethnic preferences in school friendship networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 307-316.
    13. Loet Leydesdorff, 2007. "Betweenness centrality as an indicator of the interdisciplinarity of scientific journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(9), pages 1303-1319, July.
    14. Jonathan M. Levitt & Mike Thelwall, 2008. "Is multidisciplinary research more highly cited? A macrolevel study," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(12), pages 1973-1984, October.
    15. Thomas W. Steele & Jeffrey C. Stier, 2000. "The impact of interdisciplinary research in the environmental sciences: a forestry case study," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 51(5), pages 476-484.
    16. Wolfgang Glänzel & András Schubert, 2003. "A new classification scheme of science fields and subfields designed for scientometric evaluation purposes," Scientometrics, Springer;Akadémiai Kiadó, vol. 56(3), pages 357-367, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Li & Jason Rollins & Erjia Yan, 2018. "Web of Science use in published research and review papers 1997–2017: a selective, dynamic, cross-domain, content-based analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 1-20, April.
    2. Yin, Yian & Wang, Dashun, 2017. "The time dimension of science: Connecting the past to the future," Journal of Informetrics, Elsevier, vol. 11(2), pages 608-621.
    3. He, Jialin & Chen, Duanbing & Sun, Chongjing & Fu, Yan & Li, Wenjun, 2017. "Efficient stepwise detection of communities in temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 438-446.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
    2. Yan, Erjia, 2014. "Research dynamics: Measuring the continuity and popularity of research topics," Journal of Informetrics, Elsevier, vol. 8(1), pages 98-110.
    3. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    4. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    5. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    6. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    7. Wagner, Caroline S. & Roessner, J. David & Bobb, Kamau & Klein, Julie Thompson & Boyack, Kevin W. & Keyton, Joann & Rafols, Ismael & Börner, Katy, 2011. "Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature," Journal of Informetrics, Elsevier, vol. 5(1), pages 14-26.
    8. Ricardo Arencibia-Jorge & Rosa Lidia Vega-Almeida & José Luis Jiménez-Andrade & Humberto Carrillo-Calvet, 2022. "Evolutionary stages and multidisciplinary nature of artificial intelligence research," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5139-5158, September.
    9. Boyack, Kevin W. & Klavans, Richard, 2014. "Including cited non-source items in a large-scale map of science: What difference does it make?," Journal of Informetrics, Elsevier, vol. 8(3), pages 569-580.
    10. Daniele Rotolo & Ismael Rafols & Michael Hopkins & Loet Leydesdorff, 2014. "Scientometric Mapping as a Strategic Intelligence Tool for the Governance of Emerging Technologies," SPRU Working Paper Series 2014-10, SPRU - Science Policy Research Unit, University of Sussex Business School.
    11. Rons, Nadine, 2018. "Bibliometric approximation of a scientific specialty by combining key sources, title words, authors and references," Journal of Informetrics, Elsevier, vol. 12(1), pages 113-132.
    12. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2020. "Measuring researchers’ potential scholarly impact with structural variations: Four types of researchers in information science (1979–2018)," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-26, June.
    13. Jochen Gläser & Wolfgang Glänzel & Andrea Scharnhorst, 2017. "Same data—different results? Towards a comparative approach to the identification of thematic structures in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 981-998, May.
    14. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    15. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    16. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    17. Raymundo das Neves Machado & Benjamín Vargas-Quesada & Jacqueline Leta, 2016. "Intellectual structure in stem cell research: exploring Brazilian scientific articles from 2001 to 2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 525-537, February.
    18. Lina Xu & Steven Dellaportas & Zhiqiang Yang & Jin Wang, 2023. "More on the relationship between interdisciplinary accounting research and citation impact," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(4), pages 4779-4803, December.
    19. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    20. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.

    More about this item

    Keywords

    Article co-citation network; Group dynamics; Tag extraction; Multidisciplinarity;
    All these keywords.

    JEL classification:

    • B00 - Schools of Economic Thought and Methodology - - General - - - History of Economic Thought, Methodology, and Heterodox Approaches
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:108:y:2016:i:2:d:10.1007_s11192-016-1971-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.