IDEAS home Printed from https://ideas.repec.org/r/bla/jinfst/v61y2010i7p1377-1385.html
   My bibliography  Save this item

Statistical validation of a global model for the distribution of the ultimate number of citations accrued by papers published in a scientific journal

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rodríguez-Navarro, Alonso & Brito, Ricardo, 2018. "Double rank analysis for research assessment," Journal of Informetrics, Elsevier, vol. 12(1), pages 31-41.
  2. S. R. Goldberg & H. Anthony & T. S. Evans, 2015. "Modelling citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1577-1604, December.
  3. Vîiu, Gabriel-Alexandru, 2018. "The lognormal distribution explains the remarkable pattern documented by characteristic scores and scales in scientometrics," Journal of Informetrics, Elsevier, vol. 12(2), pages 401-415.
  4. David I. Stern, 2017. "Comment on Bornmann (2017): confidence intervals for journal impact factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1811-1813, December.
  5. Mutz, Rüdiger & Bornmann, Lutz & Daniel, Hans-Dieter, 2017. "Are there any frontiers of research performance? Efficiency measurement of funded research projects with the Bayesian stochastic frontier analysis for count data," Journal of Informetrics, Elsevier, vol. 11(3), pages 613-628.
  6. Oliveira, Diego F.M. & Chan, Kevin S., 2019. "The effects of trust and influence on the spreading of low and high quality information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 657-663.
  7. João A G Moreira & Xiao Han T Zeng & Luís A Nunes Amaral, 2015. "The Distribution of the Asymptotic Number of Citations to Sets of Publications by a Researcher or from an Academic Department Are Consistent with a Discrete Lognormal Model," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-17, November.
  8. Alonso Rodríguez-Navarro & Ricardo Brito, 2019. "Probability and expected frequency of breakthroughs: basis and use of a robust method of research assessment," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 213-235, April.
  9. Daniele Rotolo & Michael Hopkins & Nicola Grassano, 2023. "Do funding sources complement or substitute? Examining the impact of cancer research publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 50-66, January.
  10. Min Song & Su Yeon Kim, 2013. "Detecting the knowledge structure of bioinformatics by mining full-text collections," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 183-201, July.
  11. Antonia Gogoglou & Antonis Sidiropoulos & Dimitrios Katsaros & Yannis Manolopoulos, 2017. "The fractal dimension of a citation curve: quantifying an individual’s scientific output using the geometry of the entire curve," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1751-1774, June.
  12. Jiahang Lyu & Saralees Nadarajah, 2022. "Discrete lognormal distributions with application to insurance data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1268-1282, June.
  13. Yin, Yian & Wang, Dashun, 2017. "The time dimension of science: Connecting the past to the future," Journal of Informetrics, Elsevier, vol. 11(2), pages 608-621.
  14. Lafond, Francois, 2012. "Learning and the structure of citation networks," MERIT Working Papers 2012-071, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
  15. B Ian Hutchins & Xin Yuan & James M Anderson & George M Santangelo, 2016. "Relative Citation Ratio (RCR): A New Metric That Uses Citation Rates to Measure Influence at the Article Level," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-25, September.
  16. Ginger Zhe Jin & Benjamin Jones & Susan Feng Lu & Brian Uzzi, 2013. "The Reverse Matthew Effect: Catastrophe and Consequence in Scientific Teams," NBER Working Papers 19489, National Bureau of Economic Research, Inc.
  17. Thelwall, Mike, 2016. "Are the discretised lognormal and hooked power law distributions plausible for citation data?," Journal of Informetrics, Elsevier, vol. 10(2), pages 454-470.
  18. Abramo, Giovanni & Cicero, Tindaro & D’Angelo, Ciriaco Andrea, 2012. "How important is choice of the scaling factor in standardizing citations?," Journal of Informetrics, Elsevier, vol. 6(4), pages 645-654.
  19. Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
  20. Brito, Ricardo & Navarro, Alonso Rodríguez, 2021. "The inconsistency of h-index: A mathematical analysis," Journal of Informetrics, Elsevier, vol. 15(1).
  21. Thelwall, Mike & Wilson, Paul, 2014. "Regression for citation data: An evaluation of different methods," Journal of Informetrics, Elsevier, vol. 8(4), pages 963-971.
  22. David I Stern, 2014. "High-Ranked Social Science Journal Articles Can Be Identified from Early Citation Information," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-11, November.
  23. José M Miotto & Eduardo G Altmann, 2014. "Predictability of Extreme Events in Social Media," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-7, November.
  24. Andrea Bonaccorsi & Cinzia Daraio & Stefano Fantoni & Viola Folli & Marco Leonetti & Giancarlo Ruocco, 2017. "Do social sciences and humanities behave like life and hard sciences?," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(1), pages 607-653, July.
  25. Brito, Ricardo & Rodríguez-Navarro, Alonso, 2018. "Research assessment by percentile-based double rank analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 315-329.
  26. Koon-Kiu Yan & Mark Gerstein, 2011. "The Spread of Scientific Information: Insights from the Web Usage Statistics in PLoS Article-Level Metrics," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-7, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.