IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v119y2019i1d10.1007_s11192-019-03022-1.html
   My bibliography  Save this article

Probability and expected frequency of breakthroughs: basis and use of a robust method of research assessment

Author

Listed:
  • Alonso Rodríguez-Navarro

    (Universidad Politécnica de Madrid
    Universidad Complutense de Madrid)

  • Ricardo Brito

    (Universidad Complutense de Madrid)

Abstract

In research policy, effective measures that lead to improvements in the generation of knowledge must be based on reliable methods of research assessment, but for many countries and institutions this is not the case. Publication and citation analyses can be used to estimate the part played by countries and institutions in the global progress of knowledge, but a concrete method of estimation is far from evident. The challenge arises because publications that report real progress of knowledge form an extremely low proportion of all publications; in most countries and institutions such contributions appear less than once per year. One way to overcome this difficulty is to calculate probabilities instead of counting the rare events on which scientific progress is based. This study reviews and summarizes several recent publications, and adds new results that demonstrate that the citation distribution of normal publications allows the probability of the infrequent events that support the progress of knowledge to be calculated.

Suggested Citation

  • Alonso Rodríguez-Navarro & Ricardo Brito, 2019. "Probability and expected frequency of breakthroughs: basis and use of a robust method of research assessment," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 213-235, April.
  • Handle: RePEc:spr:scient:v:119:y:2019:i:1:d:10.1007_s11192-019-03022-1
    DOI: 10.1007/s11192-019-03022-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03022-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03022-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael J. Stringer & Marta Sales‐Pardo & Luís A. Nunes Amaral, 2010. "Statistical validation of a global model for the distribution of the ultimate number of citations accrued by papers published in a scientific journal," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(7), pages 1377-1385, July.
    2. T. S. Evans & N. Hopkins & B. S. Kaube, 2012. "Universality of performance indicators based on citation and reference counts," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 473-495, November.
    3. Thelwall, Mike & Wilson, Paul, 2014. "Regression for citation data: An evaluation of different methods," Journal of Informetrics, Elsevier, vol. 8(4), pages 963-971.
    4. Loet Leydesdorff & Paul Wouters & Lutz Bornmann, 2016. "Professional and citizen bibliometrics: complementarities and ambivalences in the development and use of indicators—a state-of-the-art report," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2129-2150, December.
    5. Pedro Albarrán & Juan A. Crespo & Ignacio Ortuño & Javier Ruiz-Castillo, 2011. "The skewness of science in 219 sub-fields and a number of aggregates," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 385-397, August.
    6. J Sylvan Katz, 2016. "What Is a Complex Innovation System?," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-24, June.
    7. Miller, Peter & O'Leary, Ted, 2007. "Mediating instruments and making markets: Capital budgeting, science and the economy," Accounting, Organizations and Society, Elsevier, vol. 32(7-8), pages 701-734.
    8. Rodríguez-Navarro, Alonso & Brito, Ricardo, 2018. "Double rank analysis for research assessment," Journal of Informetrics, Elsevier, vol. 12(1), pages 31-41.
    9. Neus Herranz & Javier Ruiz-Castillo, 2013. "The end of the “European Paradox”," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 453-464, April.
    10. Antonio Perianes-Rodriguez & Javier Ruiz-Castillo, 2015. "Within- and between-department variability in individual productivity: the case of economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1497-1520, February.
    11. Ruiz-Castillo, Javier & Waltman, Ludo, 2015. "Field-normalized citation impact indicators using algorithmically constructed classification systems of science," Journal of Informetrics, Elsevier, vol. 9(1), pages 102-117.
    12. Rodríguez-Navarro, Alonso & Brito, Ricardo, 2018. "Technological research in the EU is less efficient than the world average. EU research policy risks Europeans’ future," Journal of Informetrics, Elsevier, vol. 12(3), pages 718-731.
    13. Wang, Jian & Veugelers, Reinhilde & Stephan, Paula, 2017. "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Research Policy, Elsevier, vol. 46(8), pages 1416-1436.
    14. Vîiu, Gabriel-Alexandru, 2018. "The lognormal distribution explains the remarkable pattern documented by characteristic scores and scales in scientometrics," Journal of Informetrics, Elsevier, vol. 12(2), pages 401-415.
    15. Jaime A. Teixeira da Silva & Judit Dobránszki, 2018. "Rejoinder to “Multiple versions of the h-index: cautionary use for formal academic purposes”," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 1131-1137, May.
    16. Pedro Albarrán & Javier Ruiz‐Castillo, 2011. "References made and citations received by scientific articles," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(1), pages 40-49, January.
    17. Schreiber, Michael, 2013. "A case study of the arbitrariness of the h-index and the highly-cited-publications indicator," Journal of Informetrics, Elsevier, vol. 7(2), pages 379-387.
    18. Lutz Bornmann, 2013. "How to analyze percentile citation impact data meaningfully in bibliometrics: The statistical analysis of distributions, percentile rank classes, and top-cited papers," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(3), pages 587-595, March.
    19. Ludo Waltman & Michael Schreiber, 2013. "On the calculation of percentile-based bibliometric indicators," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(2), pages 372-379, February.
    20. Michael J. Stringer & Marta Sales-Pardo & Luís A. Nunes Amaral, 2010. "Statistical validation of a global model for the distribution of the ultimate number of citations accrued by papers published in a scientific journal," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1377-1385, July.
    21. Lutz Bornmann & Loet Leydesdorff, 2018. "Count highly-cited papers instead of papers with h citations: use normalized citation counts and compare “like with like”!," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 1119-1123, May.
    22. H. Bauke, 2007. "Parameter estimation for power-law distributions by maximum likelihood methods," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(2), pages 167-173, July.
    23. Andrea Bonaccorsi, 2007. "Explaining poor performance of European science: Institutions versus policies," Science and Public Policy, Oxford University Press, vol. 34(5), pages 303-316, June.
    24. Vîiu, Gabriel-Alexandru, 2017. "Disaggregated research evaluation through median-based characteristic scores and scales: a comparison with the mean-based approach," Journal of Informetrics, Elsevier, vol. 11(3), pages 748-765.
    25. Ben R Martin, 2011. "The Research Excellence Framework and the ‘impact agenda’: are we creating a Frankenstein monster?," Research Evaluation, Oxford University Press, vol. 20(3), pages 247-254, September.
    26. Juan Miguel Campanario, 2009. "Rejecting and resisting Nobel class discoveries: accounts by Nobel Laureates," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(2), pages 549-565, November.
    27. Li, Yunrong & Radicchi, Filippo & Castellano, Claudio & Ruiz-Castillo, Javier, 2013. "Quantitative evaluation of alternative field normalization procedures," Journal of Informetrics, Elsevier, vol. 7(3), pages 746-755.
    28. Robert J. W. Tijssen & Martijn S. Visser & Thed N. van Leeuwen, 2002. "Benchmarking international scientific excellence: Are highly cited research papers an appropriate frame of reference?," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(3), pages 381-397, July.
    29. Michael H. MacRoberts & Barbara R. MacRoberts, 2018. "The mismeasure of science: Citation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(3), pages 474-482, March.
    30. Dosi, Giovanni & Llerena, Patrick & Labini, Mauro Sylos, 2006. "The relationships between science, technologies and their industrial exploitation: An illustration through the myths and realities of the so-called `European Paradox'," Research Policy, Elsevier, vol. 35(10), pages 1450-1464, December.
    31. Bornmann, Lutz & Leydesdorff, Loet & Mutz, Rüdiger, 2013. "The use of percentiles and percentile rank classes in the analysis of bibliometric data: Opportunities and limits," Journal of Informetrics, Elsevier, vol. 7(1), pages 158-165.
    32. M. Goldstein & S. Morris & G. Yen, 2004. "Problems with fitting to the power-law distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 41(2), pages 255-258, September.
    33. Brito, Ricardo & Rodríguez-Navarro, Alonso, 2019. "Evaluating research and researchers by the journal impact factor: Is it better than coin flipping?," Journal of Informetrics, Elsevier, vol. 13(1), pages 314-324.
    34. Pedro Albarrán & Antonio Perianes-Rodríguez & Javier Ruiz-Castillo, 2015. "Differences in citation impact across countries," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(3), pages 512-525, March.
    35. Anthony F. J. Raan, 2006. "Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 67(3), pages 491-502, June.
    36. Alonso Rodríguez-Navarro & Francis Narin, 2018. "European Paradox or Delusion—Are European Science and Economy Outdated?," Science and Public Policy, Oxford University Press, vol. 45(1), pages 14-23.
    37. Ludo Waltman & Michael Schreiber, 2013. "On the calculation of percentile‐based bibliometric indicators," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(2), pages 372-379, February.
    38. Stevan Harnad, 2009. "Open access scientometrics and the UK Research Assessment Exercise," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(1), pages 147-156, April.
    39. Strathern, Marilyn, 1997. "‘Improving ratings’: audit in the British University system," European Review, Cambridge University Press, vol. 5(3), pages 305-321, July.
    40. Lutz Bornmann & Adam Y. Ye & Fred Y. Ye, 2017. "Sequence analysis of annually normalized citation counts: an empirical analysis based on the characteristic scores and scales (CSS) method," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1665-1680, December.
    41. Elisabeth Maria Schlagberger & Lutz Bornmann & Johann Bauer, 2016. "At what institutions did Nobel laureates do their prize-winning work? An analysis of biographical information on Nobel laureates from 1994 to 2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 723-767, November.
    42. Brito, Ricardo & Rodríguez-Navarro, Alonso, 2018. "Research assessment by percentile-based double rank analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 315-329.
    43. John E. Ettlie & William P. Bridges & Robert D. O'Keefe, 1984. "Organization Strategy and Structural Differences for Radical Versus Incremental Innovation," Management Science, INFORMS, vol. 30(6), pages 682-695, June.
    44. Thelwall, Mike & Wilson, Paul, 2014. "Distributions for cited articles from individual subjects and years," Journal of Informetrics, Elsevier, vol. 8(4), pages 824-839.
    45. Jaime A. Teixeira da Silva & Judit Dobránszki, 2018. "Multiple versions of the h-index: cautionary use for formal academic purposes," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 1107-1113, May.
    46. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodríguez-Navarro, Alonso & Brito, Ricardo, 2024. "Rank analysis of most cited publications, a new approach for research assessments," Journal of Informetrics, Elsevier, vol. 18(2).
    2. Melika Mosleh & Saeed Roshani & Mario Coccia, 2022. "Scientific laws of research funding to support citations and diffusion of knowledge in life science," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1931-1951, April.
    3. Saarela, Mirka & Kärkkäinen, Tommi, 2020. "Can we automate expert-based journal rankings? Analysis of the Finnish publication indicator," Journal of Informetrics, Elsevier, vol. 14(2).
    4. Alonso Rodríguez-Navarro & Ricardo Brito, 2022. "The link between countries’ economic and scientific wealth has a complex dependence on technological activity and research policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2871-2896, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brito, Ricardo & Rodríguez-Navarro, Alonso, 2018. "Research assessment by percentile-based double rank analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 315-329.
    2. Brito, Ricardo & Navarro, Alonso Rodríguez, 2021. "The inconsistency of h-index: A mathematical analysis," Journal of Informetrics, Elsevier, vol. 15(1).
    3. Rodríguez-Navarro, Alonso & Brito, Ricardo, 2018. "Double rank analysis for research assessment," Journal of Informetrics, Elsevier, vol. 12(1), pages 31-41.
    4. Rodríguez-Navarro, Alonso & Brito, Ricardo, 2018. "Technological research in the EU is less efficient than the world average. EU research policy risks Europeans’ future," Journal of Informetrics, Elsevier, vol. 12(3), pages 718-731.
    5. Rodríguez-Navarro, Alonso & Brito, Ricardo, 2024. "Rank analysis of most cited publications, a new approach for research assessments," Journal of Informetrics, Elsevier, vol. 18(2).
    6. Ruiz-Castillo, Javier & Costas, Rodrigo, 2018. "Individual and field citation distributions in 29 broad scientific fields," Journal of Informetrics, Elsevier, vol. 12(3), pages 868-892.
    7. Gerson Pech & Catarina Delgado, 2020. "Percentile and stochastic-based approach to the comparison of the number of citations of articles indexed in different bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 223-252, April.
    8. Gerson Pech & Catarina Delgado, 2020. "Assessing the publication impact using citation data from both Scopus and WoS databases: an approach validated in 15 research fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 909-924, November.
    9. Vîiu, Gabriel-Alexandru, 2018. "The lognormal distribution explains the remarkable pattern documented by characteristic scores and scales in scientometrics," Journal of Informetrics, Elsevier, vol. 12(2), pages 401-415.
    10. Thelwall, Mike, 2016. "The precision of the arithmetic mean, geometric mean and percentiles for citation data: An experimental simulation modelling approach," Journal of Informetrics, Elsevier, vol. 10(1), pages 110-123.
    11. Bonaccorsi, Andrea & Haddawy, Peter & Cicero, Tindaro & Hassan, Saeed-Ul, 2017. "The solitude of stars. An analysis of the distributed excellence model of European universities," Journal of Informetrics, Elsevier, vol. 11(2), pages 435-454.
    12. Andrea Bonaccorsi & Tindaro Cicero & Peter Haddawy & Saeed-UL Hassan, 2017. "Explaining the transatlantic gap in research excellence," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 217-241, January.
    13. Gabriel-Alexandru Vȋiu & Mihai Păunescu, 2021. "The lack of meaningful boundary differences between journal impact factor quartiles undermines their independent use in research evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1495-1525, February.
    14. Alonso Rodríguez-Navarro & Ricardo Brito, 2022. "The link between countries’ economic and scientific wealth has a complex dependence on technological activity and research policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2871-2896, May.
    15. Bouyssou, Denis & Marchant, Thierry, 2016. "Ranking authors using fractional counting of citations: An axiomatic approach," Journal of Informetrics, Elsevier, vol. 10(1), pages 183-199.
    16. Lauranne Chaignon & Domingo Docampo & Daniel Egret, 2023. "In search of a scientific elite: highly cited researchers (HCR) in France," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5801-5827, October.
    17. Ruiz-Castillo, Javier & Waltman, Ludo, 2015. "Field-normalized citation impact indicators using algorithmically constructed classification systems of science," Journal of Informetrics, Elsevier, vol. 9(1), pages 102-117.
    18. Hamdi A. Al-Jamimi & Galal M. BinMakhashen & Lutz Bornmann & Yousif Ahmed Al Wajih, 2023. "Saudi Arabia research: academic insights and trend analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5595-5627, October.
    19. Lutz Bornmann & Alexander Tekles & Loet Leydesdorff, 2019. "How well does I3 perform for impact measurement compared to other bibliometric indicators? The convergent validity of several (field-normalized) indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1187-1205, May.
    20. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:119:y:2019:i:1:d:10.1007_s11192-019-03022-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.