IDEAS home Printed from https://ideas.repec.org/r/arx/papers/1810.04868.html
   My bibliography  Save this item

Lifting the Heston model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "A fractional Hawkes process for illiquidity modeling," LIDAM Discussion Papers ISBA 2023001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  2. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Working Papers hal-03902513, HAL.
  3. Siow Woon Jeng & Adem Kiliçman, 2021. "On Multilevel and Control Variate Monte Carlo Methods for Option Pricing under the Rough Heston Model," Mathematics, MDPI, vol. 9(22), pages 1-32, November.
  4. Ackermann, Julia & Kruse, Thomas & Overbeck, Ludger, 2022. "Inhomogeneous affine Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 250-279.
  5. Yiru Xi & Hoi Ying Wong, 2021. "Discrete variance swap in a rough volatility economy," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1640-1654, October.
  6. Eduardo Abi Jaber & Nathan de Carvalho, 2024. "Reconciling rough volatility with jumps," Post-Print hal-04295416, HAL.
  7. Eduardo Abi Jaber, 2020. "The Laplace transform of the integrated Volterra Wishart process," Working Papers hal-02367200, HAL.
  8. Yoshioka, Hidekazu & Yoshioka, Yumi, 2024. "Generalized divergences for statistical evaluation of uncertainty in long-memory processes," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  9. Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
  10. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2021. "American options in the Volterra Heston model," Working Papers hal-03178306, HAL.
  11. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02367200, HAL.
  12. Eduardo Abi Jaber, 2020. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Working Papers hal-02412741, HAL.
  13. Christa Cuchiero & Tonio Mollmann & Josef Teichmann, 2023. "Ramifications of generalized Feller theory," Papers 2308.03858, arXiv.org.
  14. Etienne Chevalier & Sergio Pulido & Elizabeth Z'u~niga, 2021. "American options in the Volterra Heston model," Papers 2103.11734, arXiv.org, revised May 2022.
  15. Mathieu Rosenbaum & Jianfei Zhang, 2021. "Deep calibration of the quadratic rough Heston model," Papers 2107.01611, arXiv.org, revised May 2022.
  16. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Working Papers hal-03230167, HAL.
  17. Etienne Chevalier & Sergio Pulido & Elizabeth Zúñiga, 2022. "American options in the Volterra Heston model," Post-Print hal-03178306, HAL.
  18. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
  19. Fabio Baschetti & Giacomo Bormetti & Pietro Rossi, 2023. "Deep calibration with random grids," Papers 2306.11061, arXiv.org, revised Jan 2024.
  20. Siow Woon Jeng & Adem Kilicman, 2020. "Series Expansion and Fourth-Order Global Padé Approximation for a Rough Heston Solution," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
  21. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org.
  22. Eduardo Abi Jaber, 2021. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Post-Print hal-02412741, HAL.
  23. Xiaoyu Shen & Fang Fang & Chengguang Liu, 2024. "The Fourier Cosine Method for Discrete Probability Distributions," Papers 2410.04487, arXiv.org, revised Oct 2024.
  24. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Post-Print hal-02367200, HAL.
  25. Eduardo Abi Jaber & Nathan De Carvalho, 2023. "Reconciling rough volatility with jumps," Papers 2303.07222, arXiv.org, revised Sep 2024.
  26. Ozan Akdogan, 2019. "Vol-of-vol expansion for (rough) stochastic volatility models," Papers 1910.03245, arXiv.org, revised Dec 2019.
  27. Eduardo Abi Jaber & Shaun & Li, 2024. "Volatility models in practice: Rough, Path-dependent or Markovian?," Papers 2401.03345, arXiv.org.
  28. Eduardo Abi Jaber, 2019. "The Laplace transform of the integrated Volterra Wishart process," Papers 1911.07719, arXiv.org, revised Jul 2024.
  29. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Learning for Exotic Option Valuation," Papers 2103.12551, arXiv.org, revised Sep 2021.
  30. Eduardo Abi Jaber, 2021. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02412741, HAL.
  31. Han, Bingyan & Wong, Hoi Ying, 2021. "Merton’s portfolio problem under Volterra Heston model," Finance Research Letters, Elsevier, vol. 39(C).
  32. Paul Jusselin, 2020. "Optimal market making with persistent order flow," Papers 2003.05958, arXiv.org, revised Oct 2020.
  33. Jingtang Ma & Zhengyang Lu & Zhenyu Cui, 2022. "Delta family approach for the stochastic control problems of utility maximization," Papers 2202.12745, arXiv.org.
  34. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
  35. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.
  36. Eduardo Abi Jaber, 2019. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Papers 1912.07445, arXiv.org, revised Jun 2020.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.