IDEAS home Printed from https://ideas.repec.org/r/arx/papers/1206.0478.html
   My bibliography  Save this item

Beyond cash-additive risk measures: when changing the num\'{e}raire fails

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Cosimo Munari & Stefan Weber & Lutz Wilhelmy, 2023. "Capital requirements and claims recovery: A new perspective on solvency regulation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 329-380, June.
  2. Shengzhong Chen & Niushan Gao & Denny Leung & Lei Li, 2021. "Automatic Fatou Property of Law-invariant Risk Measures," Papers 2107.08109, arXiv.org, revised Jan 2022.
  3. Jana Hlavinova & Birgit Rudloff & Alexander Smirnow, 2023. "Set-valued intrinsic measures of systemic risk," Papers 2311.14588, arXiv.org.
  4. Niushan Gao & Cosimo Munari & Foivos Xanthos, 2019. "Stability properties of Haezendonck-Goovaerts premium principles," Papers 1909.10735, arXiv.org, revised Aug 2020.
  5. Cosimo Munari, 2020. "Multi-utility representations of incomplete preferences induced by set-valued risk measures," Papers 2009.04151, arXiv.org.
  6. Michel Baes & Cosimo Munari, 2017. "A continuous selection for optimal portfolios under convex risk measures does not always exist," Papers 1711.00370, arXiv.org.
  7. Jascha Alexander & Christian Laudag'e & Jorn Sass, 2024. "Risk measures based on target risk profiles," Papers 2409.17676, arXiv.org.
  8. Koch-Medina Pablo & Munari Cosimo, 2014. "Law-invariant risk measures: Extension properties and qualitative robustness," Statistics & Risk Modeling, De Gruyter, vol. 31(3-4), pages 215-236, December.
  9. Laudagé, Christian & Sass, Jörn & Wenzel, Jörg, 2022. "Combining multi-asset and intrinsic risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 254-269.
  10. Xia Han & Qiuqi Wang & Ruodu Wang & Jianming Xia, 2021. "Cash-subadditive risk measures without quasi-convexity," Papers 2110.12198, arXiv.org, revised May 2024.
  11. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
  12. Michel Baes & Cosimo Munari, 2020. "A continuous selection for optimal portfolios under convex risk measures does not always exist," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 5-23, February.
  13. W. Farkas & A. Smirnow, 2016. "Intrinsic risk measures," Papers 1610.08782, arXiv.org.
  14. Niushan Gao & Foivos Xanthos, 2024. "A note on continuity and asymptotic consistency of measures of risk and variability," Papers 2405.09766, arXiv.org, revised Oct 2024.
  15. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
  16. Pablo Koch-Medina & Santiago Moreno-Bromberg & Cosimo Munari, 2014. "Capital adequacy tests and limited liability of financial institutions," Papers 1401.3133, arXiv.org, revised Feb 2014.
  17. Michel Baes & Pablo Koch-Medina & Cosimo Munari, 2017. "Existence, uniqueness and stability of optimal portfolios of eligible assets," Papers 1702.01936, arXiv.org, revised Dec 2017.
  18. Martin Herdegen & Nazem Khan & Cosimo Munari, 2024. "Risk, utility and sensitivity to large losses," Papers 2405.12154, arXiv.org.
  19. Gao, Niushan & Munari, Cosimo & Xanthos, Foivos, 2020. "Stability properties of Haezendonck–Goovaerts premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 94-99.
  20. Giulia Di Nunno & Emanuela Rosazza Gianin, 2024. "Cash non-additive risk measures: horizon risk and generalized entropy," Papers 2401.14443, arXiv.org, revised Jun 2024.
  21. Pablo Koch-Medina & Cosimo Munari & Gregor Svindland, 2016. "Which eligible assets are compatible with comonotonic capital requirements?," Papers 1602.05477, arXiv.org, revised Jan 2021.
  22. Farkas, Walter & Koch-Medina, Pablo & Munari, Cosimo, 2014. "Capital requirements with defaultable securities," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 58-67.
  23. Xia Han & Ruodu Wang & Qinyu Wu, 2023. "Monotonic mean-deviation risk measures," Papers 2312.01034, arXiv.org, revised Aug 2024.
  24. Xue Dong He & Xianhua Peng, 2017. "Surplus-Invariant, Law-Invariant, and Conic Acceptance Sets Must be the Sets Induced by Value-at-Risk," Papers 1707.05596, arXiv.org, revised Jan 2018.
  25. Cosimo Munari, 2021. "Multi-utility representations of incomplete preferences induced by set-valued risk measures," Finance and Stochastics, Springer, vol. 25(1), pages 77-99, January.
  26. Sascha Desmettre & Christian Laudagé & Jörn Sass, 2020. "Good-Deal Bounds for Option Prices under Value-at-Risk and Expected Shortfall Constraints," Risks, MDPI, vol. 8(4), pages 1-22, October.
  27. Niushan Gao & Denny Leung & Cosimo Munari & Foivos Xanthos, 2018. "Fatou property, representations, and extensions of law-invariant risk measures on general Orlicz spaces," Finance and Stochastics, Springer, vol. 22(2), pages 395-415, April.
  28. Hans Rau-Bredow, 2019. "Bigger Is Not Always Safer: A Critical Analysis of the Subadditivity Assumption for Coherent Risk Measures," Risks, MDPI, vol. 7(3), pages 1-18, August.
  29. Erio Castagnoli & Giacomo Cattelan & Fabio Maccheroni & Claudio Tebaldi & Ruodu Wang, 2021. "Star-shaped Risk Measures," Papers 2103.15790, arXiv.org, revised Apr 2022.
  30. Andreas H. Hamel & Frank Heyde, 2021. "Set-Valued T -Translative Functions and Their Applications in Finance," Mathematics, MDPI, vol. 9(18), pages 1-33, September.
  31. Niushan Gao & Denny H. Leung & Cosimo Munari & Foivos Xanthos, 2017. "Fatou Property, representations, and extensions of law-invariant risk measures on general Orlicz spaces," Papers 1701.05967, arXiv.org, revised Sep 2017.
  32. Samuel Solgon Santos & Marlon Ruoso Moresco & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2023. "A note on the induction of comonotonic additive risk measures from acceptance sets," Papers 2307.04647, arXiv.org, revised Jul 2023.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.