IDEAS home Printed from https://ideas.repec.org/r/ags/uwarer/269403.html
   My bibliography  Save this item

Cost Monotonicity, Consistency and Minimum Cost Spanning Tree Games

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gustavo Bergantiños & Silvia Lorenzo-Freire, 2008. "A characterization of optimistic weighted Shapley rules in minimum cost spanning tree problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 523-538, June.
  2. Gustavo Bergantiños & María Gómez-Rúa, 2010. "Minimum cost spanning tree problems with groups," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 43(2), pages 227-262, May.
  3. Gustavo Bergantiños & Juan Vidal-Puga, 2004. "Realizing efficient outcomes in cost spanning problems," Game Theory and Information 0403001, University Library of Munich, Germany.
  4. Gustavo Bergantiños & Leticia Lorenzo, 2021. "Cost additive rules in minimum cost spanning tree problems with multiple sources," Annals of Operations Research, Springer, vol. 301(1), pages 5-15, June.
  5. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
  6. Gustavo Bergantiños & Youngsub Chun & Eunju Lee & Leticia Lorenzo, 2022. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 24(01), pages 1-36, March.
  7. Davila-Pena, Laura & Borm, Peter & Garcia-Jurado, Ignacio & Schouten, Jop, 2023. "An Allocation Rule for Graph Machine Scheduling Problems," Other publications TiSEM 17013f33-1d65-4294-802c-b, Tilburg University, School of Economics and Management.
  8. Gomez-Rua, Maria & Vidal-Puga, Juan, 2006. "No advantageous merging in minimum cost spanning tree problems," MPRA Paper 601, University Library of Munich, Germany.
  9. Norde, Henk, 2019. "The degree and cost adjusted folk solution for minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 113(C), pages 734-742.
  10. Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2003. "The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations," Discussion Paper 2003-129, Tilburg University, Center for Economic Research.
  11. José-Manuel Giménez-Gómez & Josep E Peris & Begoña Subiza, 2020. "An egalitarian approach for sharing the cost of a spanning tree," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
  12. Bahel, Eric & Gómez-Rúa, María & Vidal-Puga, Juan, 2020. "Stability in shortest path problems," MPRA Paper 98504, University Library of Munich, Germany.
  13. R. Pablo Arribillaga & G. Bergantiños, 2022. "Cooperative and axiomatic approaches to the knapsack allocation problem," Annals of Operations Research, Springer, vol. 318(2), pages 805-830, November.
  14. Balázs Sziklai & Tamás Fleiner & Tamás Solymosi, 2014. "On the Core of Directed Acyclic Graph Games," CERS-IE WORKING PAPERS 1418, Institute of Economics, Centre for Economic and Regional Studies.
  15. Bergantiños, Gustavo & Vidal-Puga, Juan, 2009. "Additivity in minimum cost spanning tree problems," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 38-42, January.
  16. Bergantiños, Gustavo & Vidal-Puga, Juan, 2010. "Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms," European Journal of Operational Research, Elsevier, vol. 201(3), pages 811-820, March.
  17. Juarez, Ruben & Ko, Chiu Yu & Xue, Jingyi, 2018. "Sharing sequential values in a network," Journal of Economic Theory, Elsevier, vol. 177(C), pages 734-779.
  18. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
  19. Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Other publications TiSEM 7ac3a323-f736-46a6-b568-c, Tilburg University, School of Economics and Management.
  20. Tijs, Stef & Branzei, Rodica & Moretti, Stefano & Norde, Henk, 2006. "Obligation rules for minimum cost spanning tree situations and their monotonicity properties," European Journal of Operational Research, Elsevier, vol. 175(1), pages 121-134, November.
  21. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
  22. Davila-Pena, Laura & Borm, Peter & Garcia-Jurado, Ignacio & Schouten, Jop, 2023. "An Allocation Rule for Graph Machine Scheduling Problems," Discussion Paper 2023-009, Tilburg University, Center for Economic Research.
  23. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
  24. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016. "Strategic sharing of a costly network," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
  25. Trudeau, Christian & Vidal-Puga, Juan, 2020. "Clique games: A family of games with coincidence between the nucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
  26. Bergantiños, Gustavo & Martínez, Ricardo, 2014. "Cost allocation in asymmetric trees," European Journal of Operational Research, Elsevier, vol. 237(3), pages 975-987.
  27. Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
  28. Leticia Lorenzo & Silvia Lorenzo-Freire, 2009. "A characterization of Kruskal sharing rules for minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 107-126, March.
  29. Ciftci, B.B. & Tijs, S.H., 2007. "A Vertex Oriented Approach to Minimum Cost Spanning Tree Problems," Discussion Paper 2007-89, Tilburg University, Center for Economic Research.
  30. Trudeau, Christian & Vidal-Puga, Juan, 2017. "On the set of extreme core allocations for minimal cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 169(C), pages 425-452.
  31. Gustavo Bergantiños & Leticia Lorenzo & Silvia Lorenzo-Freire, 2010. "The family of cost monotonic and cost additive rules in minimum cost spanning tree problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(4), pages 695-710, April.
  32. Stefano Moretti & Rodica Branzei & Henk Norde & Stef Tijs, 2004. "The P-value for cost sharing in minimum," Theory and Decision, Springer, vol. 56(2_2), pages 47-61, February.
  33. Barış Çiftçi & Stef Tijs, 2009. "A vertex oriented approach to the equal remaining obligations rule for minimum cost spanning tree situations," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 440-453, December.
  34. Bergantiños, G. & Navarro-Ramos, A., 2019. "The folk rule through a painting procedure for minimum cost spanning tree problems with multiple sources," Mathematical Social Sciences, Elsevier, vol. 99(C), pages 43-48.
  35. Jens Hougaard & Hervé Moulin & Lars Østerdal, 2010. "Decentralized pricing in minimum cost spanning trees," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(2), pages 293-306, August.
  36. Ciftci, B.B. & Tijs, S.H., 2007. "A Vertex Oriented Approach to Minimum Cost Spanning Tree Problems," Other publications TiSEM 1b5a01d9-e7e4-43da-acf0-7, Tilburg University, School of Economics and Management.
  37. Gustavo Bergantiños & Juan Vidal-Puga, 2004. "Additivity in cost spanning tree problems," Game Theory and Information 0405001, University Library of Munich, Germany.
  38. Anna Bogomolnaia & Ron Holzman & Hervé Moulin, 2010. "Sharing the Cost of a Capacity Network," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 173-192, February.
  39. Trudeau, Christian, 2009. "Network flow problems and permutationally concave games," Mathematical Social Sciences, Elsevier, vol. 58(1), pages 121-131, July.
  40. Darmann, Andreas & Klamler, Christian & Pferschy, Ulrich, 2010. "A note on maximizing the minimum voter satisfaction on spanning trees," Mathematical Social Sciences, Elsevier, vol. 60(1), pages 82-85, July.
  41. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
  42. Moulin, Hervé, 2014. "Pricing traffic in a spanning network," Games and Economic Behavior, Elsevier, vol. 86(C), pages 475-490.
  43. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
  44. Gustavo Bergantinos & Juan Vidal-Puga, 2008. "On Some Properties of Cost Allocation Rules in Minimum Cost Spanning Tree Problems," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 2(3), pages 251-267, December.
  45. Bergantiños, G. & Gómez-Rúa, M. & Llorca, N. & Pulido, M. & Sánchez-Soriano, J., 2014. "A new rule for source connection problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 780-788.
  46. Yusuke Kamishiro, 2015. "On the core of a cost allocation problem under asymmetric information," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 25(1), pages 17-32.
  47. Gustavo Bergantiños & María Gómez-Rúa, 2015. "An axiomatic approach in minimum cost spanning tree problems with groups," Annals of Operations Research, Springer, vol. 225(1), pages 45-63, February.
  48. Bahel, Eric & Gómez-Rúa, María & Vidal-Puga, Juan, 2024. "Stable and weakly additive cost sharing in shortest path problems," Journal of Mathematical Economics, Elsevier, vol. 110(C).
  49. Bergantiños, Gustavo & Lorenzo, Leticia & Lorenzo-Freire, Silvia, 2011. "A generalization of obligation rules for minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 211(1), pages 122-129, May.
  50. Andreas Darmann & Christian Klamler & Ulrich Pferschy, 2015. "Sharing the Cost of a Path," Studies in Microeconomics, , vol. 3(1), pages 1-12, June.
  51. Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
  52. Darmann, Andreas & Klamler, Christian & Pferschy, Ulrich, 2009. "Maximizing the minimum voter satisfaction on spanning trees," Mathematical Social Sciences, Elsevier, vol. 58(2), pages 238-250, September.
  53. Chun, Youngsub & Lee, Joosung, 2012. "Sequential contributions rules for minimum cost spanning tree problems," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 136-143.
  54. Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Discussion Paper 2013-039, Tilburg University, Center for Economic Research.
  55. Liu, Siwen & Borm, Peter & Norde, Henk, 2023. "Induced Rules for Minimum Cost Spanning Tree Problems : Towards Merge-Proofness and Coalitional Stability," Discussion Paper 2023-021, Tilburg University, Center for Economic Research.
  56. Juan J. Vidal-Puga & Gustavo Bergantiños, 2004. "Defining Rules in Cost Spanning Tree Problems Through the Canonical Form," Working Papers 2004.97, Fondazione Eni Enrico Mattei.
  57. Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2003. "The P-Value for Cost Sharing in Minimum Cost Spanning Tree Situations," Other publications TiSEM de0e437c-1588-469d-a2ff-a, Tilburg University, School of Economics and Management.
  58. Andreas Darmann & Christian Klamler & Ulrich Pferschy, 2011. "Finding socially best spanning trees," Theory and Decision, Springer, vol. 70(4), pages 511-527, April.
  59. Darko Skorin-Kapov, 2018. "Social enterprise tree network games," Annals of Operations Research, Springer, vol. 268(1), pages 5-20, September.
  60. Tijs, S.H. & Brânzei, R. & Moretti, S. & Norde, H.W., 2004. "Obligation Rules for Minimum Cost Spanning Tree Situations and their Monotonicity Properties," Other publications TiSEM 78d24994-1074-4329-b911-c, Tilburg University, School of Economics and Management.
  61. Liu, Siwen & Borm, Peter & Norde, Henk, 2023. "Induced Rules for Minimum Cost Spanning Tree Problems : Towards Merge-Proofness and Coalitional Stability," Other publications TiSEM bf366633-5301-4aad-81c8-a, Tilburg University, School of Economics and Management.
  62. Gustavo Bergantiños & Juan Vidal-Puga, 2007. "The optimistic TU game in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(2), pages 223-239, October.
  63. Bergantiños, Gustavo & Navarro, Adriana, 2019. "Characterization of the painting rule for multi-source minimal cost spanning tree problems," MPRA Paper 93266, University Library of Munich, Germany.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.