IDEAS home Printed from https://ideas.repec.org/p/zbw/zewdip/283613.html
   My bibliography  Save this paper

In vi(vi)no veritas? Expertise, review accuracy and reputation inflation

Author

Listed:
  • Janßen, Rebecca
  • Ribar, Matthew K.

Abstract

Review systems including quantitative measures as well as text-based expression of experiences are omnipresent in today's digital platform economy. This paper studies the existence of reputation inflation, i.e. unjustified increases in ratings, with a special focus of heterogeneity between experienced and non-experienced users. Using data on more than 5 million reviews from an online wine platform we compare consistency between numerical feedback and textual reviews as well as sentiment measures. We show that overall the wine platform displays strongly increasing numerical feedback over our time period from 2014 to 2020 while this is not the case for our control measures. This gap appears to be even stronger for users with less experience or expertise in wine reviewing. We conclude, that online platforms as well as potential customers should be aware of the phenomenon of reputation inflation and simplifying feedback to one number might do a disservice to review platforms' goal of providing a representative quality assessment.

Suggested Citation

  • Janßen, Rebecca & Ribar, Matthew K., 2023. "In vi(vi)no veritas? Expertise, review accuracy and reputation inflation," ZEW Discussion Papers 23-075, ZEW - Leibniz Centre for European Economic Research.
  • Handle: RePEc:zbw:zewdip:283613
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/283613/1/1881226425.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgios Zervas & Davide Proserpio & John W. Byers, 2021. "A first look at online reputation on Airbnb, where every stay is above average," Marketing Letters, Springer, vol. 32(1), pages 1-16, March.
    2. Chrysanthos Dellarocas & Charles A. Wood, 2008. "The Sound of Silence in Online Feedback: Estimating Trading Risks in the Presence of Reporting Bias," Management Science, INFORMS, vol. 54(3), pages 460-476, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorecchio, Caio & Monte, Daniel, 2023. "Bad reputation with simple rating systems," Games and Economic Behavior, Elsevier, vol. 142(C), pages 150-178.
    2. Arslan Aziz & Hui Li & Rahul Telang, 2023. "The Consequences of Rating Inflation on Platforms: Evidence from a Quasi-Experiment," Information Systems Research, INFORMS, vol. 34(2), pages 590-608, June.
    3. Pierre Fleckinger & Matthieu Glachant & Gabrielle Moineville, 2017. "Incentives for Quality in Friendly and Hostile Informational Environments," American Economic Journal: Microeconomics, American Economic Association, vol. 9(1), pages 242-274, February.
    4. Hui, Xiang & Klein, Tobias & Stahl, Konrad, 2022. "Learning from Online Ratings," CEPR Discussion Papers 17006, C.E.P.R. Discussion Papers.
    5. Tobias Gesche, 2022. "Reference‐price shifts and customer antagonism: Evidence from reviews for online auctions," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(3), pages 558-578, August.
    6. Christoph Safferling & Aaron Lowen, 2011. "Economics in the Kingdom of Loathing: Analysis of Virtual Market Data," Working Paper Series of the Department of Economics, University of Konstanz 2011-30, Department of Economics, University of Konstanz.
    7. Yoon Sang Lee & Chulhwan Chris Bang, 2022. "Framework for the Classification of Imbalanced Structured Data Using Under-sampling and Convolutional Neural Network," Information Systems Frontiers, Springer, vol. 24(6), pages 1795-1809, December.
    8. Lingfang (Ivy) Li & Steven Tadelis & Xiaolan Zhou, 2020. "Buying reputation as a signal of quality: Evidence from an online marketplace," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 965-988, December.
    9. Aperjis, Christina & Zeckhauser, Richard J. & Miao, Yali, 2014. "Variable temptations and black mark reputations," Games and Economic Behavior, Elsevier, vol. 87(C), pages 70-90.
    10. Tobias J. Klein & Christian Lambertz & Konrad O. Stahl, 2016. "Market Transparency, Adverse Selection, and Moral Hazard," Journal of Political Economy, University of Chicago Press, vol. 124(6), pages 1677-1713.
    11. Gesche, Tobias, 2018. "Reference Price Shifts and Customer Antagonism: Evidence from Reviews for Online Auctions," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181650, Verein für Socialpolitik / German Economic Association.
    12. Jian Lian & MacKie-Mason Jeffrey K & Resnick Paul, 2010. "I Scratched Yours: The Prevalence of Reciprocation in Feedback Provision on eBay," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-40, September.
    13. Lena Abou El-Komboz & Anna Kerkhof & Johannes Loh, 2023. "Platform Partnership Programs and Content Supply: Evidence from the YouTube “Adpocalypse”," CESifo Working Paper Series 10363, CESifo.
    14. Li, Lingfang (Ivy), 2010. "What is the cost of venting? Evidence from eBay," Economics Letters, Elsevier, vol. 108(2), pages 215-218, August.
    15. Xue, Lan & Leung, Xi Y. & Ma, Shihan (David), 2022. "What makes a good “guest”: Evidence from Airbnb hosts' reviews," Annals of Tourism Research, Elsevier, vol. 95(C).
    16. Ruohuang Jiao & Wojtek Przepiorka & Vincent Buskens, 2022. "Moderators of reputation effects in peer-to-peer online markets: a meta-analytic model selection approach," Journal of Computational Social Science, Springer, vol. 5(1), pages 1041-1067, May.
    17. Apostolos Filippas & John J. Horton & Joseph M. Golden, 2022. "Reputation Inflation," Marketing Science, INFORMS, vol. 41(4), pages 733-745, July.
    18. Klein, T.J. & Lambertz, C. & Stahl, K., 2013. "Adverse Selection and Moral Hazard in Anonymous Markets," Discussion Paper 2013-032, Tilburg University, Center for Economic Research.
    19. Gary Bolton & Ben Greiner & Axel Ockenfels, 2013. "Engineering Trust: Reciprocity in the Production of Reputation Information," Management Science, INFORMS, vol. 59(2), pages 265-285, January.
    20. Paulo B. Goes & Mingfeng Lin & Ching-man Au Yeung, 2014. "“Popularity Effect” in User-Generated Content: Evidence from Online Product Reviews," Information Systems Research, INFORMS, vol. 25(2), pages 222-238, June.

    More about this item

    Keywords

    reputation inflation; online reviews; expert reviews; sentiment; text data;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D02 - Microeconomics - - General - - - Institutions: Design, Formation, Operations, and Impact
    • L15 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Information and Product Quality
    • L81 - Industrial Organization - - Industry Studies: Services - - - Retail and Wholesale Trade; e-Commerce

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:zewdip:283613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zemande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.