IDEAS home Printed from https://ideas.repec.org/p/zbw/zewdip/10055.html
   My bibliography  Save this paper

Pollution externalities in a Schumpeterian growth model

Author

Listed:
  • Koesler, Simon

Abstract

This paper extends a standard Schumpeterian growth model to include an environmental dimension. Thereby, it explicitly links the pollution intensity of economic activity to technological progress. In a second step, it investigates the effect of pollution on economic growth under the assumption that pollution intensities are related to technological progress. Several conclusions emerge from the model. In equilibrium, the economy follows a balanced growth path. The effect of pollution on the economic growth rate vitally depends on the households' degree of pollution aversion and on the link between pollution intensity and the technology level. The decentralized solution does not meet the social optimum, though the social optimum can be implemented through the introduction of subsidies and pollution permits. Expectedly, the introduction of a pollution threshold stalls growth if pollution is not decoupled from economic growth and the possibility of pollution abatement allows the economy to grow at a higher rate.

Suggested Citation

  • Koesler, Simon, 2010. "Pollution externalities in a Schumpeterian growth model," ZEW Discussion Papers 10-055, ZEW - Leibniz Centre for European Economic Research.
  • Handle: RePEc:zbw:zewdip:10055
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/40157/1/635310252.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grimaud, Andre, 1999. "Pollution Permits and Sustainable Growth in a Schumpeterian Model," Journal of Environmental Economics and Management, Elsevier, vol. 38(3), pages 249-266, November.
    2. Smulders, Sjak & Gradus, Raymond, 1996. "Pollution abatement and long-term growth," European Journal of Political Economy, Elsevier, vol. 12(3), pages 505-532, November.
    3. Philippe Aghion & Peter Howitt, 2009. "The Economics of Growth," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012634, April.
    4. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    5. Hart, Rob, 2004. "Growth, environment and innovation--a model with production vintages and environmentally oriented research," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1078-1098, November.
    6. Francesco Ricci, 2007. "Environmental policy and growth when inputs are differentiated in pollution intensity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(3), pages 285-310, November.
    7. Xepapadeas, Anastasios, 2005. "Economic growth and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 23, pages 1219-1271, Elsevier.
    8. K. G. Mäler & J. R. Vincent (ed.), 2005. "Handbook of Environmental Economics," Handbook of Environmental Economics, Elsevier, edition 1, volume 3, number 3.
    9. Raymond Gradus & Sjak Smulders, 1993. "The trade-off between environmental care and long-term growth—Pollution in three prototype growth models," Journal of Economics, Springer, vol. 58(1), pages 25-51, February.
    10. Greiner, Alfred & Semmler, Willi (ed.), 2008. "The Global Environment, Natural Resources, and Economic Growth," OUP Catalogue, Oxford University Press, number 9780195328233.
    11. Alwyn Young, 1998. "Growth without Scale Effects," Journal of Political Economy, University of Chicago Press, vol. 106(1), pages 41-63, February.
    12. Philippe Michel & Gilles Rotillon, 1995. "Disutility of pollution and endogenous growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 6(3), pages 279-300, October.
    13. Dinopoulos, Elias & Thompson, Peter, 1998. "Schumpeterian Growth without Scale Effects," Journal of Economic Growth, Springer, vol. 3(4), pages 313-335, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominique Bianco, 2017. "Environmental Policy in an Endogenous Growth Model with Expanding Variety," Revue d'économie politique, Dalloz, vol. 127(6), pages 1013-1028.
    2. Koesler, Simon & Pothen, Frank, 2013. "The Basic WIOD CGE Model: A computable general equilibrium model based on the World Input-Output Database," ZEW Dokumentationen 13-04, ZEW - Leibniz Centre for European Economic Research.
    3. Afonso, Oscar, 2023. "Fiscal and monetary effects on environmental quality, growth, and welfare," Research in Economics, Elsevier, vol. 77(1), pages 202-219.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricci, Francesco, 2007. "Channels of transmission of environmental policy to economic growth: A survey of the theory," Ecological Economics, Elsevier, vol. 60(4), pages 688-699, February.
    2. Anton Bondarev & Alfred Greiner, 2022. "How ongoing structural change creates a double dividend: outdating of technologies and green growth," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(2), pages 125-160, May.
    3. Afonso, Oscar, 2023. "Fiscal and monetary effects on environmental quality, growth, and welfare," Research in Economics, Elsevier, vol. 77(1), pages 202-219.
    4. Minoru Nakada, 2010. "Environmental Tax Reform and Growth: Income Tax Cuts or Profits Tax Reduction," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 549-565, December.
    5. Francesco Ricci, 2007. "Environmental policy and growth when inputs are differentiated in pollution intensity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(3), pages 285-310, November.
    6. Dagmar Nelissen & Till Requate, 2007. "Pollution-reducing and resource-saving technological progress," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 6(1), pages 5-44.
    7. Dominique Bianco, 2017. "Environmental Policy in an Endogenous Growth Model with Expanding Variety," Revue d'économie politique, Dalloz, vol. 127(6), pages 1013-1028.
    8. Mahmoud Hassan & Walid Oueslati & Damien Rousselière, 2020. "Exploring the link between energy based taxes and economic growth," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(1), pages 67-87, January.
    9. Eriksson, Clas, 2018. "Phasing out a polluting input in a growth model with directed technological change," Economic Modelling, Elsevier, vol. 68(C), pages 461-474.
    10. Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," TSE Working Papers 14-469, Toulouse School of Economics (TSE).
    11. Holger Strulik & Klaus Prettner & Alexia Prskawetz, 2013. "The past and future of knowledge-based growth," Journal of Economic Growth, Springer, vol. 18(4), pages 411-437, December.
    12. Santiago J. Rubio, Jose L. Garcia and Jose L. Hueso, 2009. "Neoclassical Growth, Environment and Technological Change: The Environmental Kuznets Curve," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    13. Xepapadeas, Anastasios, 2005. "Economic growth and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 23, pages 1219-1271, Elsevier.
    14. Walid Oueslati, 2013. "Short and Long-term Effects of Environmental Tax Reform," Working Papers 2013.09, Fondazione Eni Enrico Mattei.
    15. Groth, Christian & Ricci, Francesco, 2011. "Optimal growth when environmental quality is a research asset," Research in Economics, Elsevier, vol. 65(4), pages 340-352, December.
    16. Alberto Bucci, 2014. "Population, competition, innovation, and economic growth with and without human capital investment," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 61(1), pages 61-84, April.
    17. Mavi, Can Askan, 2024. "Creative destruction vs destructive destruction: A Schumpeterian approach for adaptation and mitigation," Mathematical Social Sciences, Elsevier, vol. 127(C), pages 36-53.
    18. Gray, Elie & Grimaud, André, 2014. "The Lindahl equilibrium in Schumpeterian growth models: Knowledge diffusion, social value of innovations and optimal R&D incentives," IDEI Working Papers 821, Institut d'Économie Industrielle (IDEI), Toulouse.
    19. Susana Silva & Isabel Soares & Oscar Afonso, 2021. "Decoupling economic growth from emissions: the case of policies promoting resource substitution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8331-8347, June.
    20. Andreas Schaefer, 2016. "Survival to Adulthood and the Growth Drag of Pollution," CER-ETH Economics working paper series 16/241, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.

    More about this item

    Keywords

    economic growth; endogenous pollution intensity; Schumpeter;
    All these keywords.

    JEL classification:

    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:zewdip:10055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zemande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.