IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v127y2024icp36-53.html
   My bibliography  Save this article

Creative destruction vs destructive destruction: A Schumpeterian approach for adaptation and mitigation

Author

Listed:
  • Mavi, Can Askan

Abstract

This article aims to demonstrate how a market exposed to a catastrophic event strives to find a balance between adaptation and mitigation policies through R&D strategies. Our analysis reveals that, within our framework, there exists no trade-off between adaptation and mitigation. Rather, the critical relationship exists between adaptation and pollution because adaptation (wealth accumulation) increases the growth rate of the economy, leading to a higher flow pollution due to the scale effect. We also investigate the long-run effects of pollution taxes on growth rates and the influence of the probability of catastrophic events on these outcomes. Our findings suggest that even with a higher likelihood of catastrophe, the economy can elevate its R&D endeavors, provided that the penalty rate stemming from an abrupt event remains sufficiently high and the economy confronts a risk of a doomsday scenario. Additionally, we illustrate that pollution taxes can foster heightened long-term growth, with the positive effects being more pronounced when the probability of catastrophe is elevated, assuming an adequately substantial penalty rate. Finally, we find that pollution growth can be higher with less polluting inputs due to a scale effect, a phenomenon akin to the Jevons-type paradox.

Suggested Citation

  • Mavi, Can Askan, 2024. "Creative destruction vs destructive destruction: A Schumpeterian approach for adaptation and mitigation," Mathematical Social Sciences, Elsevier, vol. 127(C), pages 36-53.
  • Handle: RePEc:eee:matsoc:v:127:y:2024:i:c:p:36-53
    DOI: 10.1016/j.mathsocsci.2023.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489623001014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2023.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanase, Akihiko, 2011. "Impatience, pollution, and indeterminacy," Journal of Economic Dynamics and Control, Elsevier, vol. 35(10), pages 1789-1799, October.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Yacov Tsur & Amos Zemel, 2009. "Endogenous Discounting and Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(4), pages 507-520, December.
    4. Grimaud, Andre, 1999. "Pollution Permits and Sustainable Growth in a Schumpeterian Model," Journal of Environmental Economics and Management, Elsevier, vol. 38(3), pages 249-266, November.
    5. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    6. Minoru Nakada, 2010. "Environmental Tax Reform and Growth: Income Tax Cuts or Profits Tax Reduction," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 549-565, December.
    7. Alain Ayong Le Kama & Aude Pommeret, 2016. "Supplementing domestic mitigation and adaptation with emissions reduction abroad to face climate change," Post-Print hal-01386053, HAL.
    8. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    9. Bommier, Antoine & Lanz, Bruno & Zuber, Stéphane, 2015. "Models-as-usual for unusual risks? On the value of catastrophic climate change," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 1-22.
    10. Hötte, Kerstin & Jee, Su Jung, 2022. "Knowledge for a warmer world: A patent analysis of climate change adaptation technologies," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    11. Buob, Seraina & Stephan, Gunter, 2011. "To mitigate or to adapt: How to confront global climate change," European Journal of Political Economy, Elsevier, vol. 27(1), pages 1-16, March.
    12. repec:hal:pseose:hal-01199503 is not listed on IDEAS
    13. de Zeeuw, Aart & Zemel, Amos, 2012. "Regime shifts and uncertainty in pollution control," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 939-950.
    14. Tsur, Yacov & Zemel, Amos, 1998. "Pollution control in an uncertain environment," Journal of Economic Dynamics and Control, Elsevier, vol. 22(6), pages 967-975, June.
    15. Zemel, Amos, 2015. "Adaptation, mitigation and risk: An analytic approach," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 133-147.
    16. Tsur, Yacov & Zemel, Amos, 1996. "Accounting for global warming risks: Resource management under event uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 20(6-7), pages 1289-1305.
    17. Sally Kane & Jason Shogren, 2000. "Linking Adaptation and Mitigation in Climate Change Policy," Climatic Change, Springer, vol. 45(1), pages 75-102, April.
    18. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    19. Tsur, Yacov & Zemel, Amos, 2016. "Policy tradeoffs under risk of abrupt climate change," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 46-55.
    20. Francesco Ricci, 2007. "Environmental policy and growth when inputs are differentiated in pollution intensity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(3), pages 285-310, November.
    21. Hart, Rob, 2004. "Growth, environment and innovation--a model with production vintages and environmentally oriented research," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1078-1098, November.
    22. Antony Millner & Simon Dietz, 2011. "Adaptation to climate change and economic growth in developing countries," GRI Working Papers 60, Grantham Research Institute on Climate Change and the Environment.
    23. Minoru Nakada, 2004. "Does Environmental Policy Necessarily Discourage Growth?," Journal of Economics, Springer, vol. 81(3), pages 249-275, March.
    24. Yacov Tsur & Amos Zemel, 2016. "The Management of Fragile Resources: A Long Term Perspective," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 639-655, November.
    25. Mavi, Can Askan, 2020. "Can harmful events be another source of environmental traps?," Journal of Mathematical Economics, Elsevier, vol. 89(C), pages 29-46.
    26. Stokey, Nancy L, 1998. "Are There Limits to Growth?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(1), pages 1-31, February.
    27. Can Askan Mavi, 2020. "Can harmful events be another source of environmental traps?," Post-Print hal-02880592, HAL.
    28. Mendelsohn, Robert & Dinar, Ariel & Williams, Larry, 2006. "The distributional impact of climate change on rich and poor countries," Environment and Development Economics, Cambridge University Press, vol. 11(2), pages 159-178, April.
    29. Paul Watkiss & Magnus Benzie & Richard J.T. Klein, 2015. "The complementarity and comparability of climate change adaptation and mitigation," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 6(6), pages 541-557, November.
    30. Philippe Aghion & Peter Howitt, 1997. "Endogenous Growth Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262011662, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Can Askan Mavi, 2017. "Creative Destruction vs Destructive Destruction ? : A Schumpeterian Approach for Adaptation and Mitigation," Working Papers halshs-01455297, HAL.
    2. Mavi, Can Askan, 2020. "Can harmful events be another source of environmental traps?," Journal of Mathematical Economics, Elsevier, vol. 89(C), pages 29-46.
    3. Afonso, Oscar, 2023. "Fiscal and monetary effects on environmental quality, growth, and welfare," Research in Economics, Elsevier, vol. 77(1), pages 202-219.
    4. Can Askan Mavi, 2019. "Can harmful events be another source of environmental traps?," CEE-M Working Papers halshs-02141789, CEE-M, Universtiy of Montpellier, CNRS, INRA, Montpellier SupAgro.
    5. Can Askan Mavi, 2019. "Can harmful events be another source of environmental traps?," Working Papers halshs-02141789, HAL.
    6. Can Askan Mavi, 2020. "Can harmful events be another source of environmental traps?," Post-Print hal-02880592, HAL.
    7. Oscar Afonso & Ana Catarina Afonso, 2015. "Endogenous Growth Effects of Environmental Policies," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 62(5), pages 607-629, December.
    8. Can Askan Mavi, 2017. "Can a hazardous event be another source of poverty traps ?," Working Papers hal-01522087, HAL.
    9. Minoru Nakada, 2010. "Environmental Tax Reform and Growth: Income Tax Cuts or Profits Tax Reduction," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 549-565, December.
    10. Tsur, Yacov & Zemel, Amos, 2016. "Policy tradeoffs under risk of abrupt climate change," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 46-55.
    11. Ricci, Francesco, 2007. "Channels of transmission of environmental policy to economic growth: A survey of the theory," Ecological Economics, Elsevier, vol. 60(4), pages 688-699, February.
    12. Can Askan Mavi, 2017. "What Can Abrupt Events Tell Us About Sustainability ?," Working Papers hal-01628682, HAL.
    13. Dominique Bianco, 2017. "Environmental Policy in an Endogenous Growth Model with Expanding Variety," Revue d'économie politique, Dalloz, vol. 127(6), pages 1013-1028.
    14. Cheng, Chu-chuan & Chen, Ping-ho & Chu, Hsun & Wang, Yi-chiuan, 2024. "What growth policies protect the environment? A two-engine growth model," Journal of Macroeconomics, Elsevier, vol. 81(C).
    15. Wei Jin & ZhongXiang Zhang, 2014. "From Energy-intensive to Innovation-led Growth: On the Transition Dynamics of China’s Economy," Working Papers 2014.100, Fondazione Eni Enrico Mattei.
    16. Eriksson, Clas, 2018. "Phasing out a polluting input in a growth model with directed technological change," Economic Modelling, Elsevier, vol. 68(C), pages 461-474.
    17. Nakada, Minoru, 2005. "Deregulation in an energy market and its impact on R&D for low-carbon energy technology," Resource and Energy Economics, Elsevier, vol. 27(4), pages 306-320, November.
    18. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    19. Ingmar Schumacher, 2019. "Climate Policy Must Favour Mitigation Over Adaptation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(4), pages 1519-1531, December.
    20. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:127:y:2024:i:c:p:36-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.