IDEAS home Printed from https://ideas.repec.org/p/zbw/ucdpse/9505.html
   My bibliography  Save this paper

Nichtparametrische Analyse parametrischer Wachstumsfunktionen: Eine Anwendung auf das Wachstum des globalen Netzwerks Internet

Author

Listed:
  • Brachmann, Klaus

Abstract

Besonders in der betriebswirtschaftlich relevanten Marktanalyse besteht ein großer Bedarf an möglichst einfachen Prognoseverfahren z. B. in Form von endogenen, d. h. alleine von der Zeit abhängigen, Wachstumsfunktionen. Der hier vorgestellte Test dient dazu, diejenigen Funktionen auszuwählen, welche den vorliegenden Sachverhalt hinreichend gut zu beschreiben vermögen. Dabei zeigt sich in einer empirischen Anwendung, daß dasWachstum des globalen Netzwerks Internet tatsächlich durch Exponential- bzw. logistische Funktionen zu beschreiben ist.

Suggested Citation

  • Brachmann, Klaus, 1995. "Nichtparametrische Analyse parametrischer Wachstumsfunktionen: Eine Anwendung auf das Wachstum des globalen Netzwerks Internet," Discussion Papers in Econometrics and Statistics 5/95, University of Cologne, Institute of Econometrics and Statistics.
  • Handle: RePEc:zbw:ucdpse:9505
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/45476/1/657505625.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eric Malin & Michel Bonneu & Michel Delecroix, 1993. "Semiparametric Versus Nonparametric Estimation in Single Index Models, a Computational Approach," Post-Print halshs-00440469, HAL.
    2. Härdle, W. & Marron, S.J., 1990. "Semiparametric comparison of regression curves," LIDAM Reprints CORE 890, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
    2. Blow, Laura & Crawford, Ian, 2002. "A nonparametric method for valuing new goods," Working Paper Series 143, European Central Bank.
    3. Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
    4. Zapata, Hector O. & Sulgham, Anil K., 2006. "A Semiparametric Approach to Estimate Engel curves using the US Micro Data," 2006 Annual meeting, July 23-26, Long Beach, CA 21092, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Chung, EunYi & Olivares, Mauricio, 2021. "Permutation test for heterogeneous treatment effects with a nuisance parameter," Journal of Econometrics, Elsevier, vol. 225(2), pages 148-174.
    6. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Testing Serial Independence via Density-Based Measures of Divergence," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 627-641, September.
    7. Eleftherios Giovanis & Martina Menon & Federico Perali, 2023. "Disability specific equivalence scales: a case–control approach applied to the cost of acquired brain injuries," International Journal of Health Economics and Management, Springer, vol. 23(4), pages 643-672, December.
    8. Khismatullina, Marina & Vogt, Michael, 2023. "Nonparametric comparison of epidemic time trends: The case of COVID-19," Journal of Econometrics, Elsevier, vol. 232(1), pages 87-108.
    9. Hira L. Koul & Fang Li, 2020. "Comparing two nonparametric regression curves in the presence of long memory in covariates and errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(4), pages 499-517, May.
    10. Jeffrey S. Racine & Christopher F. Parmeter, 2012. "Data-Driven Model Evaluation: A Test for Revealed Performance," Department of Economics Working Papers 2012-13, McMaster University.
    11. Zhao, Shi & Bakoyannis, Giorgos & Lourens, Spencer & Tu, Wanzhu, 2020. "Comparison of nonlinear curves and surfaces," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    12. Richard W. Blundell & Martin Browning & Ian A. Crawford, 2003. "Nonparametric Engel Curves and Revealed Preference," Econometrica, Econometric Society, vol. 71(1), pages 205-240, January.
    13. Zhou, Ling & Lin, Huazhen & Chen, Kani & Liang, Hua, 2019. "Efficient estimation and computation of parameters and nonparametric functions in generalized semi/non-parametric regression models," Journal of Econometrics, Elsevier, vol. 213(2), pages 593-607.
    14. Enno Mammen, "undated". "Comparing nonparametric versus parametric regression fits," Statistic und Oekonometrie 9205, Humboldt Universitaet Berlin.
    15. Läuter, Henning & Nikulin, Michail, 1999. "Parametric versus nonparametric goodness of fit: Another view," SFB 373 Discussion Papers 1999,14, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    16. Ying Qing Chen, 2010. "Semiparametric Regression in Size-Biased Sampling," Biometrics, The International Biometric Society, vol. 66(1), pages 149-158, March.
    17. Marina Khismatullina & Michael Vogt, 2022. "Multiscale Comparison of Nonparametric Trend Curves," Papers 2209.10841, arXiv.org.
    18. Cody Carroll & Hans‐Georg Müller & Alois Kneip, 2021. "Cross‐component registration for multivariate functional data, with application to growth curves," Biometrics, The International Biometric Society, vol. 77(3), pages 839-851, September.
    19. Holger Dette & Subhra Sankar Dhar & Weichi Wu, 2021. "Identifying shifts between two regression curves," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 855-889, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ucdpse:9505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sxkoede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.