IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2015-047.html
   My bibliography  Save this paper

TERES: Tail event risk expectile based shortfall

Author

Listed:
  • Gschöpf, Philipp
  • Härdle, Wolfgang Karl
  • Mihoci, Andrija

Abstract

A flexible framework for the analysis of tail events is proposed. The framework contains tail moment measures that allow for Expected Shortfall (ES) estimation. Connecting the implied tail thickness of a family of distributions with the quantile and expectile estimation, a platform for risk assessment is provided. ES and implications for tail events under different distributional scenarios are investigated, particularly we discuss the implications of increased tail risk for mixture distributions. Empirical results from the US, German and UK stock markets, as well as for the selected currencies indicate that ES can be successfully estimated on a daily basis using a one-year time horizon across different risk levels.

Suggested Citation

  • Gschöpf, Philipp & Härdle, Wolfgang Karl & Mihoci, Andrija, 2015. "TERES: Tail event risk expectile based shortfall," SFB 649 Discussion Papers 2015-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2015-047
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/122016/1/837599334.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilbert W. Bassett, 2004. "Pessimistic Portfolio Allocation and Choquet Expected Utility," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 477-492.
    2. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    3. Wolfgang Karl Härdle & David Kuo Chuen Lee & Sergey Nasekin & Alla Petukhina, 2018. "Tail Event Driven ASset allocation: evidence from equity and mutual funds’ markets," Journal of Asset Management, Palgrave Macmillan, vol. 19(1), pages 49-63, January.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    6. Gilbert W. Bassett Jr Bassett & Roger Koenker & Gregory Kordas, 2004. "Pessimistic portfolio allocation and Choquet expected utility," CeMMAP working papers 09/04, Institute for Fiscal Studies.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    8. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    9. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2011. "Statistical Tools for Finance and Insurance (2nd edition)," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook1101, December.
    10. Aigner, D J & Amemiya, Takeshi & Poirier, Dale J, 1976. "On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters of a Discontinuous Density Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(2), pages 377-396, June.
    11. Jones, M. C., 1994. "Expectiles and M-quantiles are quantiles," Statistics & Probability Letters, Elsevier, vol. 20(2), pages 149-153, May.
    12. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    13. Koenker, Roger, 1993. "When are Expectiles Percentiles?," Econometric Theory, Cambridge University Press, vol. 9(03), pages 526-527, June.
    14. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    15. Carlo Acerbi & Claudio Nordio & Carlo Sirtori, 2001. "Expected Shortfall as a Tool for Financial Risk Management," Papers cond-mat/0102304, arXiv.org.
    16. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    17. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    2. Härdle, Wolfgang Karl & Ling, Chengxiu, 2018. "How Sensitive are Tail-related Risk Measures in a Contamination Neighbourhood?," IRTG 1792 Discussion Papers 2018-010, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2015-047 is not listed on IDEAS
    2. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    3. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    4. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2024. "Extreme expectile estimation for short-tailed data," Journal of Econometrics, Elsevier, vol. 241(2).
    5. Samuel Drapeau & Mekonnen Tadese, 2019. "Dual Representation of Expectile based Expected Shortfall and Its Properties," Papers 1911.03245, arXiv.org.
    6. Samuel Drapeau & Mekonnen Tadese, 2019. "Relative Bound and Asymptotic Comparison of Expectile with Respect to Expected Shortfall," Papers 1906.09729, arXiv.org, revised Jun 2020.
    7. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    8. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Risk quantification for commodity ETFs: Backtesting value-at-risk and expected shortfall," International Review of Financial Analysis, Elsevier, vol. 70(C).
    9. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    10. Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    11. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    12. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    13. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    14. V. Maume-Deschamps & D. Rullière & A. Usseglio-Carleve, 2018. "Spatial Expectile Predictions for Elliptical Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 643-671, June.
    15. Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018. "Estimation of tail risk based on extreme expectiles," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
    16. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.
    17. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2023. "Extreme expectile estimation for short-tailed data, with an application to market risk assessment," TSE Working Papers 23-1414, Toulouse School of Economics (TSE), revised May 2024.
    18. Qiu, Zhiguo & Lazar, Emese & Nakata, Keiichi, 2024. "VaR and ES forecasting via recurrent neural network-based stateful models," International Review of Financial Analysis, Elsevier, vol. 92(C).
    19. Yuzhi Cai, 2021. "Estimating expected shortfall using a quantile function model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4332-4360, July.
    20. Richard Gerlach & Chao Wang, 2016. "Bayesian Semi-parametric Realized-CARE Models for Tail Risk Forecasting Incorporating Realized Measures," Papers 1612.08488, arXiv.org.
    21. James, Robert & Leung, Henry & Leung, Jessica Wai Yin & Prokhorov, Artem, 2023. "Forecasting tail risk measures for financial time series: An extreme value approach with covariates," Journal of Empirical Finance, Elsevier, vol. 71(C), pages 29-50.

    More about this item

    Keywords

    expected shortfall; expectiles; tail risk; risk management; tail events; tail moments;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2015-047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.